Add lombok and roadrunner
This commit is contained in:
parent
49d4939366
commit
76d88aba63
|
@ -26,4 +26,8 @@ android {
|
|||
dependencies {
|
||||
implementation project(':FtcRobotController')
|
||||
annotationProcessor files('lib/OpModeAnnotationProcessor.jar')
|
||||
|
||||
implementation 'org.apache.commons:commons-math3:3.6.1'
|
||||
implementation 'com.fasterxml.jackson.core:jackson-databind:2.12.7'
|
||||
implementation 'com.acmerobotics.roadrunner:core:0.5.6'
|
||||
}
|
||||
|
|
|
@ -14,9 +14,8 @@ import org.firstinspires.ftc.teamcode.vision.TargetingPipeline;
|
|||
import org.openftc.easyopencv.OpenCvCamera;
|
||||
import org.openftc.easyopencv.OpenCvCameraFactory;
|
||||
|
||||
// Class for the camera
|
||||
public class Camera {
|
||||
private HardwareMap hardwareMap;
|
||||
private final HardwareMap hardwareMap;
|
||||
private OpenCvCamera targetingCamera;
|
||||
private TargetingPipeline targetingPipeline;
|
||||
private boolean targetingCameraInitialized;
|
||||
|
|
|
@ -2,8 +2,11 @@ package org.firstinspires.ftc.teamcode.hardware;
|
|||
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
|
||||
import lombok.Getter;
|
||||
|
||||
public class Robot {
|
||||
|
||||
@Getter
|
||||
private Drive drive;
|
||||
|
||||
public Robot(HardwareMap hardwareMap) {
|
||||
|
@ -13,8 +16,4 @@ public class Robot {
|
|||
private void init(HardwareMap hardwareMap) {
|
||||
this.drive = new Drive(hardwareMap);
|
||||
}
|
||||
|
||||
public Drive getDrive() {
|
||||
return this.drive;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,94 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
|
||||
import com.qualcomm.robotcore.hardware.PIDFCoefficients;
|
||||
|
||||
/*
|
||||
* Constants shared between multiple drive types.
|
||||
*
|
||||
* TODO: Tune or adjust the following constants to fit your robot. Note that the non-final
|
||||
* fields may also be edited through the dashboard (connect to the robot's WiFi network and
|
||||
* navigate to https://192.168.49.1:8080/dash). Make sure to save the values here after you
|
||||
* adjust them in the dashboard; **config variable changes don't persist between app restarts**.
|
||||
*
|
||||
* These are not the only parameters; some are located in the localizer classes, drive base classes,
|
||||
* and op modes themselves.
|
||||
*/
|
||||
@Config
|
||||
public class DriveConstants {
|
||||
|
||||
/*
|
||||
* These are motor constants that should be listed online for your motors.
|
||||
*/
|
||||
public static final double TICKS_PER_REV = 1;
|
||||
public static final double MAX_RPM = 1;
|
||||
|
||||
/*
|
||||
* Set RUN_USING_ENCODER to true to enable built-in hub velocity control using drive encoders.
|
||||
* Set this flag to false if drive encoders are not present and an alternative localization
|
||||
* method is in use (e.g., tracking wheels).
|
||||
*
|
||||
* If using the built-in motor velocity PID, update MOTOR_VELO_PID with the tuned coefficients
|
||||
* from DriveVelocityPIDTuner.
|
||||
*/
|
||||
public static final boolean RUN_USING_ENCODER = false;
|
||||
public static PIDFCoefficients MOTOR_VELO_PID = new PIDFCoefficients(0, 0, 0,
|
||||
getMotorVelocityF(MAX_RPM / 60 * TICKS_PER_REV));
|
||||
|
||||
/*
|
||||
* These are physical constants that can be determined from your robot (including the track
|
||||
* width; it will be tune empirically later although a rough estimate is important). Users are
|
||||
* free to chose whichever linear distance unit they would like so long as it is consistently
|
||||
* used. The default values were selected with inches in mind. Road runner uses radians for
|
||||
* angular distances although most angular parameters are wrapped in Math.toRadians() for
|
||||
* convenience. Make sure to exclude any gear ratio included in MOTOR_CONFIG from GEAR_RATIO.
|
||||
*/
|
||||
public static double WHEEL_RADIUS = 2; // in
|
||||
public static double GEAR_RATIO = 1; // output (wheel) speed / input (motor) speed
|
||||
public static double TRACK_WIDTH = 1; // in
|
||||
|
||||
/*
|
||||
* These are the feedforward parameters used to model the drive motor behavior. If you are using
|
||||
* the built-in velocity PID, *these values are fine as is*. However, if you do not have drive
|
||||
* motor encoders or have elected not to use them for velocity control, these values should be
|
||||
* empirically tuned.
|
||||
*/
|
||||
public static double kV = 1.0 / rpmToVelocity(MAX_RPM);
|
||||
public static double kA = 0;
|
||||
public static double kStatic = 0;
|
||||
|
||||
/*
|
||||
* These values are used to generate the trajectories for you robot. To ensure proper operation,
|
||||
* the constraints should never exceed ~80% of the robot's actual capabilities. While Road
|
||||
* Runner is designed to enable faster autonomous motion, it is a good idea for testing to start
|
||||
* small and gradually increase them later after everything is working. All distance units are
|
||||
* inches.
|
||||
*/
|
||||
public static double MAX_VEL = 30;
|
||||
public static double MAX_ACCEL = 30;
|
||||
public static double MAX_ANG_VEL = Math.toRadians(60);
|
||||
public static double MAX_ANG_ACCEL = Math.toRadians(60);
|
||||
|
||||
/*
|
||||
* Adjust the orientations here to match your robot. See the FTC SDK documentation for details.
|
||||
*/
|
||||
public static RevHubOrientationOnRobot.LogoFacingDirection LOGO_FACING_DIR =
|
||||
RevHubOrientationOnRobot.LogoFacingDirection.UP;
|
||||
public static RevHubOrientationOnRobot.UsbFacingDirection USB_FACING_DIR =
|
||||
RevHubOrientationOnRobot.UsbFacingDirection.FORWARD;
|
||||
|
||||
|
||||
public static double encoderTicksToInches(double ticks) {
|
||||
return WHEEL_RADIUS * 2 * Math.PI * GEAR_RATIO * ticks / TICKS_PER_REV;
|
||||
}
|
||||
|
||||
public static double rpmToVelocity(double rpm) {
|
||||
return rpm * GEAR_RATIO * 2 * Math.PI * WHEEL_RADIUS / 60.0;
|
||||
}
|
||||
|
||||
public static double getMotorVelocityF(double ticksPerSecond) {
|
||||
// see https://docs.google.com/document/d/1tyWrXDfMidwYyP_5H4mZyVgaEswhOC35gvdmP-V-5hA/edit#heading=h.61g9ixenznbx
|
||||
return 32767 / ticksPerSecond;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,311 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_ACCEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_ANG_ACCEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_ANG_VEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_VEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MOTOR_VELO_PID;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.RUN_USING_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.TRACK_WIDTH;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.encoderTicksToInches;
|
||||
|
||||
import androidx.annotation.NonNull;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.roadrunner.control.PIDCoefficients;
|
||||
import com.acmerobotics.roadrunner.drive.DriveSignal;
|
||||
import com.acmerobotics.roadrunner.followers.HolonomicPIDVAFollower;
|
||||
import com.acmerobotics.roadrunner.followers.TrajectoryFollower;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryBuilder;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.AngularVelocityConstraint;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.MecanumVelocityConstraint;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.MinVelocityConstraint;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.ProfileAccelerationConstraint;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.TrajectoryAccelerationConstraint;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.TrajectoryVelocityConstraint;
|
||||
import com.qualcomm.hardware.lynx.LynxModule;
|
||||
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
import com.qualcomm.robotcore.hardware.IMU;
|
||||
import com.qualcomm.robotcore.hardware.PIDFCoefficients;
|
||||
import com.qualcomm.robotcore.hardware.VoltageSensor;
|
||||
import com.qualcomm.robotcore.hardware.configuration.typecontainers.MotorConfigurationType;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.TrajectorySequence;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.TrajectorySequenceBuilder;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.TrajectorySequenceRunner;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.util.LynxModuleUtil;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kV;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kA;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kStatic;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Simple mecanum drive hardware implementation for REV hardware.
|
||||
*/
|
||||
@Config
|
||||
public class MecanumDrive extends com.acmerobotics.roadrunner.drive.MecanumDrive {
|
||||
public static PIDCoefficients TRANSLATIONAL_PID = new PIDCoefficients(0, 0, 0);
|
||||
public static PIDCoefficients HEADING_PID = new PIDCoefficients(0, 0, 0);
|
||||
|
||||
public static double LATERAL_MULTIPLIER = 1;
|
||||
|
||||
public static double VX_WEIGHT = 1;
|
||||
public static double VY_WEIGHT = 1;
|
||||
public static double OMEGA_WEIGHT = 1;
|
||||
|
||||
private TrajectorySequenceRunner trajectorySequenceRunner;
|
||||
|
||||
private static final TrajectoryVelocityConstraint VEL_CONSTRAINT = getVelocityConstraint(MAX_VEL, MAX_ANG_VEL, TRACK_WIDTH);
|
||||
private static final TrajectoryAccelerationConstraint ACCEL_CONSTRAINT = getAccelerationConstraint(MAX_ACCEL);
|
||||
|
||||
private TrajectoryFollower follower;
|
||||
|
||||
private DcMotorEx leftFront, leftRear, rightRear, rightFront;
|
||||
private List<DcMotorEx> motors;
|
||||
|
||||
private IMU imu;
|
||||
private VoltageSensor batteryVoltageSensor;
|
||||
|
||||
private List<Integer> lastEncPositions = new ArrayList<>();
|
||||
private List<Integer> lastEncVels = new ArrayList<>();
|
||||
|
||||
public MecanumDrive(HardwareMap hardwareMap) {
|
||||
super(kV, kA, kStatic, TRACK_WIDTH, TRACK_WIDTH, LATERAL_MULTIPLIER);
|
||||
|
||||
follower = new HolonomicPIDVAFollower(TRANSLATIONAL_PID, TRANSLATIONAL_PID, HEADING_PID,
|
||||
new Pose2d(0.5, 0.5, Math.toRadians(5.0)), 0.5);
|
||||
|
||||
LynxModuleUtil.ensureMinimumFirmwareVersion(hardwareMap);
|
||||
|
||||
batteryVoltageSensor = hardwareMap.voltageSensor.iterator().next();
|
||||
|
||||
for (LynxModule module : hardwareMap.getAll(LynxModule.class)) {
|
||||
module.setBulkCachingMode(LynxModule.BulkCachingMode.AUTO);
|
||||
}
|
||||
|
||||
// TODO: adjust the names of the following hardware devices to match your configuration
|
||||
imu = hardwareMap.get(IMU.class, "imu");
|
||||
IMU.Parameters parameters = new IMU.Parameters(new RevHubOrientationOnRobot(
|
||||
DriveConstants.LOGO_FACING_DIR, DriveConstants.USB_FACING_DIR));
|
||||
imu.initialize(parameters);
|
||||
|
||||
leftFront = hardwareMap.get(DcMotorEx.class, "leftFront");
|
||||
leftRear = hardwareMap.get(DcMotorEx.class, "leftRear");
|
||||
rightRear = hardwareMap.get(DcMotorEx.class, "rightRear");
|
||||
rightFront = hardwareMap.get(DcMotorEx.class, "rightFront");
|
||||
|
||||
motors = Arrays.asList(leftFront, leftRear, rightRear, rightFront);
|
||||
|
||||
for (DcMotorEx motor : motors) {
|
||||
MotorConfigurationType motorConfigurationType = motor.getMotorType().clone();
|
||||
motorConfigurationType.setAchieveableMaxRPMFraction(1.0);
|
||||
motor.setMotorType(motorConfigurationType);
|
||||
}
|
||||
|
||||
if (RUN_USING_ENCODER) {
|
||||
setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
}
|
||||
|
||||
setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
|
||||
|
||||
if (RUN_USING_ENCODER && MOTOR_VELO_PID != null) {
|
||||
setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, MOTOR_VELO_PID);
|
||||
}
|
||||
|
||||
// TODO: reverse any motors using DcMotor.setDirection()
|
||||
|
||||
List<Integer> lastTrackingEncPositions = new ArrayList<>();
|
||||
List<Integer> lastTrackingEncVels = new ArrayList<>();
|
||||
|
||||
// TODO: if desired, use setLocalizer() to change the localization method
|
||||
// setLocalizer(new StandardTrackingWheelLocalizer(hardwareMap, lastTrackingEncPositions, lastTrackingEncVels));
|
||||
|
||||
trajectorySequenceRunner = new TrajectorySequenceRunner(
|
||||
follower, HEADING_PID, batteryVoltageSensor,
|
||||
lastEncPositions, lastEncVels, lastTrackingEncPositions, lastTrackingEncVels
|
||||
);
|
||||
}
|
||||
|
||||
public TrajectoryBuilder trajectoryBuilder(Pose2d startPose) {
|
||||
return new TrajectoryBuilder(startPose, VEL_CONSTRAINT, ACCEL_CONSTRAINT);
|
||||
}
|
||||
|
||||
public TrajectoryBuilder trajectoryBuilder(Pose2d startPose, boolean reversed) {
|
||||
return new TrajectoryBuilder(startPose, reversed, VEL_CONSTRAINT, ACCEL_CONSTRAINT);
|
||||
}
|
||||
|
||||
public TrajectoryBuilder trajectoryBuilder(Pose2d startPose, double startHeading) {
|
||||
return new TrajectoryBuilder(startPose, startHeading, VEL_CONSTRAINT, ACCEL_CONSTRAINT);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder trajectorySequenceBuilder(Pose2d startPose) {
|
||||
return new TrajectorySequenceBuilder(
|
||||
startPose,
|
||||
VEL_CONSTRAINT, ACCEL_CONSTRAINT,
|
||||
MAX_ANG_VEL, MAX_ANG_ACCEL
|
||||
);
|
||||
}
|
||||
|
||||
public void turnAsync(double angle) {
|
||||
trajectorySequenceRunner.followTrajectorySequenceAsync(
|
||||
trajectorySequenceBuilder(getPoseEstimate())
|
||||
.turn(angle)
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public void turn(double angle) {
|
||||
turnAsync(angle);
|
||||
waitForIdle();
|
||||
}
|
||||
|
||||
public void followTrajectoryAsync(Trajectory trajectory) {
|
||||
trajectorySequenceRunner.followTrajectorySequenceAsync(
|
||||
trajectorySequenceBuilder(trajectory.start())
|
||||
.addTrajectory(trajectory)
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public void followTrajectory(Trajectory trajectory) {
|
||||
followTrajectoryAsync(trajectory);
|
||||
waitForIdle();
|
||||
}
|
||||
|
||||
public void followTrajectorySequenceAsync(TrajectorySequence trajectorySequence) {
|
||||
trajectorySequenceRunner.followTrajectorySequenceAsync(trajectorySequence);
|
||||
}
|
||||
|
||||
public void followTrajectorySequence(TrajectorySequence trajectorySequence) {
|
||||
followTrajectorySequenceAsync(trajectorySequence);
|
||||
waitForIdle();
|
||||
}
|
||||
|
||||
public Pose2d getLastError() {
|
||||
return trajectorySequenceRunner.getLastPoseError();
|
||||
}
|
||||
|
||||
public void update() {
|
||||
updatePoseEstimate();
|
||||
DriveSignal signal = trajectorySequenceRunner.update(getPoseEstimate(), getPoseVelocity());
|
||||
if (signal != null) setDriveSignal(signal);
|
||||
}
|
||||
|
||||
public void waitForIdle() {
|
||||
while (!Thread.currentThread().isInterrupted() && isBusy())
|
||||
update();
|
||||
}
|
||||
|
||||
public boolean isBusy() {
|
||||
return trajectorySequenceRunner.isBusy();
|
||||
}
|
||||
|
||||
public void setMode(DcMotor.RunMode runMode) {
|
||||
for (DcMotorEx motor : motors) {
|
||||
motor.setMode(runMode);
|
||||
}
|
||||
}
|
||||
|
||||
public void setZeroPowerBehavior(DcMotor.ZeroPowerBehavior zeroPowerBehavior) {
|
||||
for (DcMotorEx motor : motors) {
|
||||
motor.setZeroPowerBehavior(zeroPowerBehavior);
|
||||
}
|
||||
}
|
||||
|
||||
public void setPIDFCoefficients(DcMotor.RunMode runMode, PIDFCoefficients coefficients) {
|
||||
PIDFCoefficients compensatedCoefficients = new PIDFCoefficients(
|
||||
coefficients.p, coefficients.i, coefficients.d,
|
||||
coefficients.f * 12 / batteryVoltageSensor.getVoltage()
|
||||
);
|
||||
|
||||
for (DcMotorEx motor : motors) {
|
||||
motor.setPIDFCoefficients(runMode, compensatedCoefficients);
|
||||
}
|
||||
}
|
||||
|
||||
public void setWeightedDrivePower(Pose2d drivePower) {
|
||||
Pose2d vel = drivePower;
|
||||
|
||||
if (Math.abs(drivePower.getX()) + Math.abs(drivePower.getY())
|
||||
+ Math.abs(drivePower.getHeading()) > 1) {
|
||||
// re-normalize the powers according to the weights
|
||||
double denom = VX_WEIGHT * Math.abs(drivePower.getX())
|
||||
+ VY_WEIGHT * Math.abs(drivePower.getY())
|
||||
+ OMEGA_WEIGHT * Math.abs(drivePower.getHeading());
|
||||
|
||||
vel = new Pose2d(
|
||||
VX_WEIGHT * drivePower.getX(),
|
||||
VY_WEIGHT * drivePower.getY(),
|
||||
OMEGA_WEIGHT * drivePower.getHeading()
|
||||
).div(denom);
|
||||
}
|
||||
|
||||
setDrivePower(vel);
|
||||
}
|
||||
|
||||
@NonNull
|
||||
@Override
|
||||
public List<Double> getWheelPositions() {
|
||||
lastEncPositions.clear();
|
||||
|
||||
List<Double> wheelPositions = new ArrayList<>();
|
||||
for (DcMotorEx motor : motors) {
|
||||
int position = motor.getCurrentPosition();
|
||||
lastEncPositions.add(position);
|
||||
wheelPositions.add(encoderTicksToInches(position));
|
||||
}
|
||||
return wheelPositions;
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<Double> getWheelVelocities() {
|
||||
lastEncVels.clear();
|
||||
|
||||
List<Double> wheelVelocities = new ArrayList<>();
|
||||
for (DcMotorEx motor : motors) {
|
||||
int vel = (int) motor.getVelocity();
|
||||
lastEncVels.add(vel);
|
||||
wheelVelocities.add(encoderTicksToInches(vel));
|
||||
}
|
||||
return wheelVelocities;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setMotorPowers(double v, double v1, double v2, double v3) {
|
||||
leftFront.setPower(v);
|
||||
leftRear.setPower(v1);
|
||||
rightRear.setPower(v2);
|
||||
rightFront.setPower(v3);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getRawExternalHeading() {
|
||||
return imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Double getExternalHeadingVelocity() {
|
||||
return (double) imu.getRobotAngularVelocity(AngleUnit.RADIANS).zRotationRate;
|
||||
}
|
||||
|
||||
public static TrajectoryVelocityConstraint getVelocityConstraint(double maxVel, double maxAngularVel, double trackWidth) {
|
||||
return new MinVelocityConstraint(Arrays.asList(
|
||||
new AngularVelocityConstraint(maxAngularVel),
|
||||
new MecanumVelocityConstraint(maxVel, trackWidth)
|
||||
));
|
||||
}
|
||||
|
||||
public static TrajectoryAccelerationConstraint getAccelerationConstraint(double maxAccel) {
|
||||
return new ProfileAccelerationConstraint(maxAccel);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,100 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive;
|
||||
|
||||
import androidx.annotation.NonNull;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.localization.ThreeTrackingWheelLocalizer;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.util.Encoder;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
/*
|
||||
* Sample tracking wheel localizer implementation assuming the standard configuration:
|
||||
*
|
||||
* /--------------\
|
||||
* | ____ |
|
||||
* | ---- |
|
||||
* | || || |
|
||||
* | || || |
|
||||
* | |
|
||||
* | |
|
||||
* \--------------/
|
||||
*
|
||||
*/
|
||||
@Config
|
||||
public class StandardTrackingWheelLocalizer extends ThreeTrackingWheelLocalizer {
|
||||
public static double TICKS_PER_REV = 0;
|
||||
public static double WHEEL_RADIUS = 2; // in
|
||||
public static double GEAR_RATIO = 1; // output (wheel) speed / input (encoder) speed
|
||||
|
||||
public static double LATERAL_DISTANCE = 10; // in; distance between the left and right wheels
|
||||
public static double FORWARD_OFFSET = 4; // in; offset of the lateral wheel
|
||||
|
||||
private Encoder leftEncoder, rightEncoder, frontEncoder;
|
||||
|
||||
private List<Integer> lastEncPositions, lastEncVels;
|
||||
|
||||
public StandardTrackingWheelLocalizer(HardwareMap hardwareMap, List<Integer> lastTrackingEncPositions, List<Integer> lastTrackingEncVels) {
|
||||
super(Arrays.asList(
|
||||
new Pose2d(0, LATERAL_DISTANCE / 2, 0), // left
|
||||
new Pose2d(0, -LATERAL_DISTANCE / 2, 0), // right
|
||||
new Pose2d(FORWARD_OFFSET, 0, Math.toRadians(90)) // front
|
||||
));
|
||||
|
||||
lastEncPositions = lastTrackingEncPositions;
|
||||
lastEncVels = lastTrackingEncVels;
|
||||
|
||||
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "leftEncoder"));
|
||||
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "rightEncoder"));
|
||||
frontEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "frontEncoder"));
|
||||
|
||||
// TODO: reverse any encoders using Encoder.setDirection(Encoder.Direction.REVERSE)
|
||||
}
|
||||
|
||||
public static double encoderTicksToInches(double ticks) {
|
||||
return WHEEL_RADIUS * 2 * Math.PI * GEAR_RATIO * ticks / TICKS_PER_REV;
|
||||
}
|
||||
|
||||
@NonNull
|
||||
@Override
|
||||
public List<Double> getWheelPositions() {
|
||||
int leftPos = leftEncoder.getCurrentPosition();
|
||||
int rightPos = rightEncoder.getCurrentPosition();
|
||||
int frontPos = frontEncoder.getCurrentPosition();
|
||||
|
||||
lastEncPositions.clear();
|
||||
lastEncPositions.add(leftPos);
|
||||
lastEncPositions.add(rightPos);
|
||||
lastEncPositions.add(frontPos);
|
||||
|
||||
return Arrays.asList(
|
||||
encoderTicksToInches(leftPos),
|
||||
encoderTicksToInches(rightPos),
|
||||
encoderTicksToInches(frontPos)
|
||||
);
|
||||
}
|
||||
|
||||
@NonNull
|
||||
@Override
|
||||
public List<Double> getWheelVelocities() {
|
||||
int leftVel = (int) leftEncoder.getCorrectedVelocity();
|
||||
int rightVel = (int) rightEncoder.getCorrectedVelocity();
|
||||
int frontVel = (int) frontEncoder.getCorrectedVelocity();
|
||||
|
||||
lastEncVels.clear();
|
||||
lastEncVels.add(leftVel);
|
||||
lastEncVels.add(rightVel);
|
||||
lastEncVels.add(frontVel);
|
||||
|
||||
return Arrays.asList(
|
||||
encoderTicksToInches(leftVel),
|
||||
encoderTicksToInches(rightVel),
|
||||
encoderTicksToInches(frontVel)
|
||||
);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,221 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_RPM;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.RUN_USING_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.rpmToVelocity;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.util.NanoClock;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.util.RobotLog;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.robotcore.internal.system.Misc;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.util.LoggingUtil;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.util.RegressionUtil;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/*
|
||||
* Op mode for computing kV, kStatic, and kA from various drive routines. For the curious, here's an
|
||||
* outline of the procedure:
|
||||
* 1. Slowly ramp the motor power and record encoder values along the way.
|
||||
* 2. Run a linear regression on the encoder velocity vs. motor power plot to obtain a slope (kV)
|
||||
* and an optional intercept (kStatic).
|
||||
* 3. Accelerate the robot (apply constant power) and record the encoder counts.
|
||||
* 4. Adjust the encoder data based on the velocity tuning data and find kA with another linear
|
||||
* regression.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class AutomaticFeedforwardTuner extends LinearOpMode {
|
||||
public static double MAX_POWER = 0.7;
|
||||
public static double DISTANCE = 100; // in
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
if (RUN_USING_ENCODER) {
|
||||
RobotLog.setGlobalErrorMsg("Feedforward constants usually don't need to be tuned " +
|
||||
"when using the built-in drive motor velocity PID.");
|
||||
}
|
||||
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
NanoClock clock = NanoClock.system();
|
||||
|
||||
telemetry.addLine("Press play to begin the feedforward tuning routine");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Would you like to fit kStatic?");
|
||||
telemetry.addLine("Press (Y/Δ) for yes, (B/O) for no");
|
||||
telemetry.update();
|
||||
|
||||
boolean fitIntercept = false;
|
||||
while (!isStopRequested()) {
|
||||
if (gamepad1.y) {
|
||||
fitIntercept = true;
|
||||
while (!isStopRequested() && gamepad1.y) {
|
||||
idle();
|
||||
}
|
||||
break;
|
||||
} else if (gamepad1.b) {
|
||||
while (!isStopRequested() && gamepad1.b) {
|
||||
idle();
|
||||
}
|
||||
break;
|
||||
}
|
||||
idle();
|
||||
}
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine(Misc.formatInvariant(
|
||||
"Place your robot on the field with at least %.2f in of room in front", DISTANCE));
|
||||
telemetry.addLine("Press (Y/Δ) to begin");
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested() && !gamepad1.y) {
|
||||
idle();
|
||||
}
|
||||
while (!isStopRequested() && gamepad1.y) {
|
||||
idle();
|
||||
}
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Running...");
|
||||
telemetry.update();
|
||||
|
||||
double maxVel = rpmToVelocity(MAX_RPM);
|
||||
double finalVel = MAX_POWER * maxVel;
|
||||
double accel = (finalVel * finalVel) / (2.0 * DISTANCE);
|
||||
double rampTime = Math.sqrt(2.0 * DISTANCE / accel);
|
||||
|
||||
List<Double> timeSamples = new ArrayList<>();
|
||||
List<Double> positionSamples = new ArrayList<>();
|
||||
List<Double> powerSamples = new ArrayList<>();
|
||||
|
||||
drive.setPoseEstimate(new Pose2d());
|
||||
|
||||
double startTime = clock.seconds();
|
||||
while (!isStopRequested()) {
|
||||
double elapsedTime = clock.seconds() - startTime;
|
||||
if (elapsedTime > rampTime) {
|
||||
break;
|
||||
}
|
||||
double vel = accel * elapsedTime;
|
||||
double power = vel / maxVel;
|
||||
|
||||
timeSamples.add(elapsedTime);
|
||||
positionSamples.add(drive.getPoseEstimate().getX());
|
||||
powerSamples.add(power);
|
||||
|
||||
drive.setDrivePower(new Pose2d(power, 0.0, 0.0));
|
||||
drive.updatePoseEstimate();
|
||||
}
|
||||
drive.setDrivePower(new Pose2d(0.0, 0.0, 0.0));
|
||||
|
||||
RegressionUtil.RampResult rampResult = RegressionUtil.fitRampData(
|
||||
timeSamples, positionSamples, powerSamples, fitIntercept,
|
||||
LoggingUtil.getLogFile(Misc.formatInvariant(
|
||||
"DriveRampRegression-%d.csv", System.currentTimeMillis())));
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Quasi-static ramp up test complete");
|
||||
if (fitIntercept) {
|
||||
telemetry.addLine(Misc.formatInvariant("kV = %.5f, kStatic = %.5f (R^2 = %.2f)",
|
||||
rampResult.kV, rampResult.kStatic, rampResult.rSquare));
|
||||
} else {
|
||||
telemetry.addLine(Misc.formatInvariant("kV = %.5f (R^2 = %.2f)",
|
||||
rampResult.kStatic, rampResult.rSquare));
|
||||
}
|
||||
telemetry.addLine("Would you like to fit kA?");
|
||||
telemetry.addLine("Press (Y/Δ) for yes, (B/O) for no");
|
||||
telemetry.update();
|
||||
|
||||
boolean fitAccelFF = false;
|
||||
while (!isStopRequested()) {
|
||||
if (gamepad1.y) {
|
||||
fitAccelFF = true;
|
||||
while (!isStopRequested() && gamepad1.y) {
|
||||
idle();
|
||||
}
|
||||
break;
|
||||
} else if (gamepad1.b) {
|
||||
while (!isStopRequested() && gamepad1.b) {
|
||||
idle();
|
||||
}
|
||||
break;
|
||||
}
|
||||
idle();
|
||||
}
|
||||
|
||||
if (fitAccelFF) {
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Place the robot back in its starting position");
|
||||
telemetry.addLine("Press (Y/Δ) to continue");
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested() && !gamepad1.y) {
|
||||
idle();
|
||||
}
|
||||
while (!isStopRequested() && gamepad1.y) {
|
||||
idle();
|
||||
}
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Running...");
|
||||
telemetry.update();
|
||||
|
||||
double maxPowerTime = DISTANCE / maxVel;
|
||||
|
||||
timeSamples.clear();
|
||||
positionSamples.clear();
|
||||
powerSamples.clear();
|
||||
|
||||
drive.setPoseEstimate(new Pose2d());
|
||||
drive.setDrivePower(new Pose2d(MAX_POWER, 0.0, 0.0));
|
||||
|
||||
startTime = clock.seconds();
|
||||
while (!isStopRequested()) {
|
||||
double elapsedTime = clock.seconds() - startTime;
|
||||
if (elapsedTime > maxPowerTime) {
|
||||
break;
|
||||
}
|
||||
|
||||
timeSamples.add(elapsedTime);
|
||||
positionSamples.add(drive.getPoseEstimate().getX());
|
||||
powerSamples.add(MAX_POWER);
|
||||
|
||||
drive.updatePoseEstimate();
|
||||
}
|
||||
drive.setDrivePower(new Pose2d(0.0, 0.0, 0.0));
|
||||
|
||||
RegressionUtil.AccelResult accelResult = RegressionUtil.fitAccelData(
|
||||
timeSamples, positionSamples, powerSamples, rampResult,
|
||||
LoggingUtil.getLogFile(Misc.formatInvariant(
|
||||
"DriveAccelRegression-%d.csv", System.currentTimeMillis())));
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Constant power test complete");
|
||||
telemetry.addLine(Misc.formatInvariant("kA = %.5f (R^2 = %.2f)",
|
||||
accelResult.kA, accelResult.rSquare));
|
||||
telemetry.update();
|
||||
}
|
||||
|
||||
while (!isStopRequested()) {
|
||||
idle();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,52 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/*
|
||||
* Op mode for preliminary tuning of the follower PID coefficients (located in the drive base
|
||||
* classes). The robot drives back and forth in a straight line indefinitely. Utilization of the
|
||||
* dashboard is recommended for this tuning routine. To access the dashboard, connect your computer
|
||||
* to the RC's WiFi network. In your browser, navigate to https://192.168.49.1:8080/dash if you're
|
||||
* using the RC phone or https://192.168.43.1:8080/dash if you are using the Control Hub. Once
|
||||
* you've successfully connected, start the program, and your robot will begin moving forward and
|
||||
* backward. You should observe the target position (green) and your pose estimate (blue) and adjust
|
||||
* your follower PID coefficients such that you follow the target position as accurately as possible.
|
||||
* If you are using SampleMecanumDrive, you should be tuning TRANSLATIONAL_PID and HEADING_PID.
|
||||
* If you are using SampleTankDrive, you should be tuning AXIAL_PID, CROSS_TRACK_PID, and HEADING_PID.
|
||||
* These coefficients can be tuned live in dashboard.
|
||||
*
|
||||
* This opmode is designed as a convenient, coarse tuning for the follower PID coefficients. It
|
||||
* is recommended that you use the FollowerPIDTuner opmode for further fine tuning.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class BackAndForth extends LinearOpMode {
|
||||
|
||||
public static double DISTANCE = 50;
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
Trajectory trajectoryForward = drive.trajectoryBuilder(new Pose2d())
|
||||
.forward(DISTANCE)
|
||||
.build();
|
||||
|
||||
Trajectory trajectoryBackward = drive.trajectoryBuilder(trajectoryForward.end())
|
||||
.back(DISTANCE)
|
||||
.build();
|
||||
|
||||
waitForStart();
|
||||
|
||||
while (opModeIsActive() && !isStopRequested()) {
|
||||
drive.followTrajectory(trajectoryForward);
|
||||
drive.followTrajectory(trajectoryBackward);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,171 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_ACCEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_VEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MOTOR_VELO_PID;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.RUN_USING_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kV;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfile;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfileGenerator;
|
||||
import com.acmerobotics.roadrunner.profile.MotionState;
|
||||
import com.acmerobotics.roadrunner.util.NanoClock;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.util.RobotLog;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/*
|
||||
* This routine is designed to tune the PID coefficients used by the REV Expansion Hubs for closed-
|
||||
* loop velocity control. Although it may seem unnecessary, tuning these coefficients is just as
|
||||
* important as the positional parameters. Like the other manual tuning routines, this op mode
|
||||
* relies heavily upon the dashboard. To access the dashboard, connect your computer to the RC's
|
||||
* WiFi network. In your browser, navigate to https://192.168.49.1:8080/dash if you're using the RC
|
||||
* phone or https://192.168.43.1:8080/dash if you are using the Control Hub. Once you've successfully
|
||||
* connected, start the program, and your robot will begin moving forward and backward according to
|
||||
* a motion profile. Your job is to graph the velocity errors over time and adjust the PID
|
||||
* coefficients (note: the tuning variable will not appear until the op mode finishes initializing).
|
||||
* Once you've found a satisfactory set of gains, add them to the DriveConstants.java file under the
|
||||
* MOTOR_VELO_PID field.
|
||||
*
|
||||
* Recommended tuning process:
|
||||
*
|
||||
* 1. Increase kP until any phase lag is eliminated. Concurrently increase kD as necessary to
|
||||
* mitigate oscillations.
|
||||
* 2. Add kI (or adjust kF) until the steady state/constant velocity plateaus are reached.
|
||||
* 3. Back off kP and kD a little until the response is less oscillatory (but without lag).
|
||||
*
|
||||
* Pressing Y/Δ (Xbox/PS4) will pause the tuning process and enter driver override, allowing the
|
||||
* user to reset the position of the bot in the event that it drifts off the path.
|
||||
* Pressing B/O (Xbox/PS4) will cede control back to the tuning process.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class DriveVelocityPIDTuner extends LinearOpMode {
|
||||
public static double DISTANCE = 72; // in
|
||||
|
||||
enum Mode {
|
||||
DRIVER_MODE,
|
||||
TUNING_MODE
|
||||
}
|
||||
|
||||
private static MotionProfile generateProfile(boolean movingForward) {
|
||||
MotionState start = new MotionState(movingForward ? 0 : DISTANCE, 0, 0, 0);
|
||||
MotionState goal = new MotionState(movingForward ? DISTANCE : 0, 0, 0, 0);
|
||||
return MotionProfileGenerator.generateSimpleMotionProfile(start, goal, MAX_VEL, MAX_ACCEL);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void runOpMode() {
|
||||
if (!RUN_USING_ENCODER) {
|
||||
RobotLog.setGlobalErrorMsg("%s does not need to be run if the built-in motor velocity" +
|
||||
"PID is not in use", getClass().getSimpleName());
|
||||
}
|
||||
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
Mode mode = Mode.TUNING_MODE;
|
||||
|
||||
double lastKp = MOTOR_VELO_PID.p;
|
||||
double lastKi = MOTOR_VELO_PID.i;
|
||||
double lastKd = MOTOR_VELO_PID.d;
|
||||
double lastKf = MOTOR_VELO_PID.f;
|
||||
|
||||
drive.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, MOTOR_VELO_PID);
|
||||
|
||||
NanoClock clock = NanoClock.system();
|
||||
|
||||
telemetry.addLine("Ready!");
|
||||
telemetry.update();
|
||||
telemetry.clearAll();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
boolean movingForwards = true;
|
||||
MotionProfile activeProfile = generateProfile(true);
|
||||
double profileStart = clock.seconds();
|
||||
|
||||
|
||||
while (!isStopRequested()) {
|
||||
telemetry.addData("mode", mode);
|
||||
|
||||
switch (mode) {
|
||||
case TUNING_MODE:
|
||||
if (gamepad1.y) {
|
||||
mode = Mode.DRIVER_MODE;
|
||||
drive.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
|
||||
}
|
||||
|
||||
// calculate and set the motor power
|
||||
double profileTime = clock.seconds() - profileStart;
|
||||
|
||||
if (profileTime > activeProfile.duration()) {
|
||||
// generate a new profile
|
||||
movingForwards = !movingForwards;
|
||||
activeProfile = generateProfile(movingForwards);
|
||||
profileStart = clock.seconds();
|
||||
}
|
||||
|
||||
MotionState motionState = activeProfile.get(profileTime);
|
||||
double targetPower = kV * motionState.getV();
|
||||
drive.setDrivePower(new Pose2d(targetPower, 0, 0));
|
||||
|
||||
List<Double> velocities = drive.getWheelVelocities();
|
||||
|
||||
// update telemetry
|
||||
telemetry.addData("targetVelocity", motionState.getV());
|
||||
for (int i = 0; i < velocities.size(); i++) {
|
||||
telemetry.addData("measuredVelocity" + i, velocities.get(i));
|
||||
telemetry.addData(
|
||||
"error" + i,
|
||||
motionState.getV() - velocities.get(i)
|
||||
);
|
||||
}
|
||||
break;
|
||||
case DRIVER_MODE:
|
||||
if (gamepad1.b) {
|
||||
drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
|
||||
mode = Mode.TUNING_MODE;
|
||||
movingForwards = true;
|
||||
activeProfile = generateProfile(movingForwards);
|
||||
profileStart = clock.seconds();
|
||||
}
|
||||
|
||||
drive.setWeightedDrivePower(
|
||||
new Pose2d(
|
||||
-gamepad1.left_stick_y,
|
||||
-gamepad1.left_stick_x,
|
||||
-gamepad1.right_stick_x
|
||||
)
|
||||
);
|
||||
break;
|
||||
}
|
||||
|
||||
if (lastKp != MOTOR_VELO_PID.p || lastKd != MOTOR_VELO_PID.d
|
||||
|| lastKi != MOTOR_VELO_PID.i || lastKf != MOTOR_VELO_PID.f) {
|
||||
drive.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, MOTOR_VELO_PID);
|
||||
|
||||
lastKp = MOTOR_VELO_PID.p;
|
||||
lastKi = MOTOR_VELO_PID.i;
|
||||
lastKd = MOTOR_VELO_PID.d;
|
||||
lastKf = MOTOR_VELO_PID.f;
|
||||
}
|
||||
|
||||
telemetry.update();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.TrajectorySequence;
|
||||
|
||||
|
||||
/*
|
||||
* Op mode for preliminary tuning of the follower PID coefficients (located in the drive base
|
||||
* classes). The robot drives in a DISTANCE-by-DISTANCE square indefinitely. Utilization of the
|
||||
* dashboard is recommended for this tuning routine. To access the dashboard, connect your computer
|
||||
* to the RC's WiFi network. In your browser, navigate to https://192.168.49.1:8080/dash if you're
|
||||
* using the RC phone or https://192.168.43.1:8080/dash if you are using the Control Hub. Once
|
||||
* you've successfully connected, start the program, and your robot will begin driving in a square.
|
||||
* You should observe the target position (green) and your pose estimate (blue) and adjust your
|
||||
* follower PID coefficients such that you follow the target position as accurately as possible.
|
||||
* If you are using SampleMecanumDrive, you should be tuning TRANSLATIONAL_PID and HEADING_PID.
|
||||
* If you are using SampleTankDrive, you should be tuning AXIAL_PID, CROSS_TRACK_PID, and HEADING_PID.
|
||||
* These coefficients can be tuned live in dashboard.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class FollowerPIDTuner extends LinearOpMode {
|
||||
public static double DISTANCE = 48; // in
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
Pose2d startPose = new Pose2d(-DISTANCE / 2, -DISTANCE / 2, 0);
|
||||
|
||||
drive.setPoseEstimate(startPose);
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
while (!isStopRequested()) {
|
||||
TrajectorySequence trajSeq = drive.trajectorySequenceBuilder(startPose)
|
||||
.forward(DISTANCE)
|
||||
.turn(Math.toRadians(90))
|
||||
.forward(DISTANCE)
|
||||
.turn(Math.toRadians(90))
|
||||
.forward(DISTANCE)
|
||||
.turn(Math.toRadians(90))
|
||||
.forward(DISTANCE)
|
||||
.turn(Math.toRadians(90))
|
||||
.build();
|
||||
drive.followTrajectorySequence(trajSeq);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/**
|
||||
* This is a simple teleop routine for testing localization. Drive the robot around like a normal
|
||||
* teleop routine and make sure the robot's estimated pose matches the robot's actual pose (slight
|
||||
* errors are not out of the ordinary, especially with sudden drive motions). The goal of this
|
||||
* exercise is to ascertain whether the localizer has been configured properly (note: the pure
|
||||
* encoder localizer heading may be significantly off if the track width has not been tuned).
|
||||
*/
|
||||
@TeleOp(group = "drive")
|
||||
public class LocalizationTest extends LinearOpMode {
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
drive.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
|
||||
|
||||
waitForStart();
|
||||
|
||||
while (!isStopRequested()) {
|
||||
drive.setWeightedDrivePower(
|
||||
new Pose2d(
|
||||
-gamepad1.left_stick_y,
|
||||
-gamepad1.left_stick_x,
|
||||
-gamepad1.right_stick_x
|
||||
)
|
||||
);
|
||||
|
||||
drive.update();
|
||||
|
||||
Pose2d poseEstimate = drive.getPoseEstimate();
|
||||
telemetry.addData("x", poseEstimate.getX());
|
||||
telemetry.addData("y", poseEstimate.getY());
|
||||
telemetry.addData("heading", poseEstimate.getHeading());
|
||||
telemetry.update();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,152 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_ACCEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.MAX_VEL;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.RUN_USING_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kA;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kStatic;
|
||||
import static org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants.kV;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.kinematics.Kinematics;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfile;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfileGenerator;
|
||||
import com.acmerobotics.roadrunner.profile.MotionState;
|
||||
import com.acmerobotics.roadrunner.util.NanoClock;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.VoltageSensor;
|
||||
import com.qualcomm.robotcore.util.RobotLog;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
import java.util.Objects;
|
||||
|
||||
/*
|
||||
* This routine is designed to tune the open-loop feedforward coefficients. Although it may seem unnecessary,
|
||||
* tuning these coefficients is just as important as the positional parameters. Like the other
|
||||
* manual tuning routines, this op mode relies heavily upon the dashboard. To access the dashboard,
|
||||
* connect your computer to the RC's WiFi network. In your browser, navigate to
|
||||
* https://192.168.49.1:8080/dash if you're using the RC phone or https://192.168.43.1:8080/dash if
|
||||
* you are using the Control Hub. Once you've successfully connected, start the program, and your
|
||||
* robot will begin moving forward and backward according to a motion profile. Your job is to graph
|
||||
* the velocity errors over time and adjust the feedforward coefficients. Once you've found a
|
||||
* satisfactory set of gains, add them to the appropriate fields in the DriveConstants.java file.
|
||||
*
|
||||
* Pressing Y/Δ (Xbox/PS4) will pause the tuning process and enter driver override, allowing the
|
||||
* user to reset the position of the bot in the event that it drifts off the path.
|
||||
* Pressing B/O (Xbox/PS4) will cede control back to the tuning process.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class ManualFeedforwardTuner extends LinearOpMode {
|
||||
public static double DISTANCE = 72; // in
|
||||
|
||||
private FtcDashboard dashboard = FtcDashboard.getInstance();
|
||||
|
||||
private MecanumDrive drive;
|
||||
|
||||
enum Mode {
|
||||
DRIVER_MODE,
|
||||
TUNING_MODE
|
||||
}
|
||||
|
||||
private Mode mode;
|
||||
|
||||
private static MotionProfile generateProfile(boolean movingForward) {
|
||||
MotionState start = new MotionState(movingForward ? 0 : DISTANCE, 0, 0, 0);
|
||||
MotionState goal = new MotionState(movingForward ? DISTANCE : 0, 0, 0, 0);
|
||||
return MotionProfileGenerator.generateSimpleMotionProfile(start, goal, MAX_VEL, MAX_ACCEL);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void runOpMode() {
|
||||
if (RUN_USING_ENCODER) {
|
||||
RobotLog.setGlobalErrorMsg("Feedforward constants usually don't need to be tuned " +
|
||||
"when using the built-in drive motor velocity PID.");
|
||||
}
|
||||
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, dashboard.getTelemetry());
|
||||
|
||||
drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
final VoltageSensor voltageSensor = hardwareMap.voltageSensor.iterator().next();
|
||||
|
||||
mode = Mode.TUNING_MODE;
|
||||
|
||||
NanoClock clock = NanoClock.system();
|
||||
|
||||
telemetry.addLine("Ready!");
|
||||
telemetry.update();
|
||||
telemetry.clearAll();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
boolean movingForwards = true;
|
||||
MotionProfile activeProfile = generateProfile(true);
|
||||
double profileStart = clock.seconds();
|
||||
|
||||
|
||||
while (!isStopRequested()) {
|
||||
telemetry.addData("mode", mode);
|
||||
|
||||
switch (mode) {
|
||||
case TUNING_MODE:
|
||||
if (gamepad1.y) {
|
||||
mode = Mode.DRIVER_MODE;
|
||||
}
|
||||
|
||||
// calculate and set the motor power
|
||||
double profileTime = clock.seconds() - profileStart;
|
||||
|
||||
if (profileTime > activeProfile.duration()) {
|
||||
// generate a new profile
|
||||
movingForwards = !movingForwards;
|
||||
activeProfile = generateProfile(movingForwards);
|
||||
profileStart = clock.seconds();
|
||||
}
|
||||
|
||||
MotionState motionState = activeProfile.get(profileTime);
|
||||
double targetPower = Kinematics.calculateMotorFeedforward(motionState.getV(), motionState.getA(), kV, kA, kStatic);
|
||||
|
||||
final double NOMINAL_VOLTAGE = 12.0;
|
||||
final double voltage = voltageSensor.getVoltage();
|
||||
drive.setDrivePower(new Pose2d(NOMINAL_VOLTAGE / voltage * targetPower, 0, 0));
|
||||
drive.updatePoseEstimate();
|
||||
|
||||
Pose2d poseVelo = Objects.requireNonNull(drive.getPoseVelocity(), "poseVelocity() must not be null. Ensure that the getWheelVelocities() method has been overridden in your localizer.");
|
||||
double currentVelo = poseVelo.getX();
|
||||
|
||||
// update telemetry
|
||||
telemetry.addData("targetVelocity", motionState.getV());
|
||||
telemetry.addData("measuredVelocity", currentVelo);
|
||||
telemetry.addData("error", motionState.getV() - currentVelo);
|
||||
break;
|
||||
case DRIVER_MODE:
|
||||
if (gamepad1.b) {
|
||||
mode = Mode.TUNING_MODE;
|
||||
movingForwards = true;
|
||||
activeProfile = generateProfile(movingForwards);
|
||||
profileStart = clock.seconds();
|
||||
}
|
||||
|
||||
drive.setWeightedDrivePower(
|
||||
new Pose2d(
|
||||
-gamepad1.left_stick_y,
|
||||
-gamepad1.left_stick_x,
|
||||
-gamepad1.right_stick_x
|
||||
)
|
||||
);
|
||||
break;
|
||||
}
|
||||
|
||||
telemetry.update();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,73 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* This routine is designed to calculate the maximum angular velocity your bot can achieve under load.
|
||||
* <p>
|
||||
* Upon pressing start, your bot will turn at max power for RUNTIME seconds.
|
||||
* <p>
|
||||
* Further fine tuning of MAX_ANG_VEL may be desired.
|
||||
*/
|
||||
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class MaxAngularVeloTuner extends LinearOpMode {
|
||||
public static double RUNTIME = 4.0;
|
||||
|
||||
private ElapsedTime timer;
|
||||
private double maxAngVelocity = 0.0;
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
drive.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
|
||||
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
telemetry.addLine("Your bot will turn at full speed for " + RUNTIME + " seconds.");
|
||||
telemetry.addLine("Please ensure you have enough space cleared.");
|
||||
telemetry.addLine("");
|
||||
telemetry.addLine("Press start when ready.");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.update();
|
||||
|
||||
drive.setDrivePower(new Pose2d(0, 0, 1));
|
||||
timer = new ElapsedTime();
|
||||
|
||||
while (!isStopRequested() && timer.seconds() < RUNTIME) {
|
||||
drive.updatePoseEstimate();
|
||||
|
||||
Pose2d poseVelo = Objects.requireNonNull(drive.getPoseVelocity(), "poseVelocity() must not be null. Ensure that the getWheelVelocities() method has been overridden in your localizer.");
|
||||
|
||||
maxAngVelocity = Math.max(poseVelo.getHeading(), maxAngVelocity);
|
||||
}
|
||||
|
||||
drive.setDrivePower(new Pose2d());
|
||||
|
||||
telemetry.addData("Max Angular Velocity (rad)", maxAngVelocity);
|
||||
telemetry.addData("Max Angular Velocity (deg)", Math.toDegrees(maxAngVelocity));
|
||||
telemetry.addData("Max Recommended Angular Velocity (rad)", maxAngVelocity * 0.8);
|
||||
telemetry.addData("Max Recommended Angular Velocity (deg)", Math.toDegrees(maxAngVelocity * 0.8));
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested()) idle();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,84 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.VoltageSensor;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* This routine is designed to calculate the maximum velocity your bot can achieve under load. It
|
||||
* will also calculate the effective kF value for your velocity PID.
|
||||
* <p>
|
||||
* Upon pressing start, your bot will run at max power for RUNTIME seconds.
|
||||
* <p>
|
||||
* Further fine tuning of kF may be desired.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class MaxVelocityTuner extends LinearOpMode {
|
||||
public static double RUNTIME = 2.0;
|
||||
|
||||
private ElapsedTime timer;
|
||||
private double maxVelocity = 0.0;
|
||||
|
||||
private VoltageSensor batteryVoltageSensor;
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
drive.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
|
||||
|
||||
batteryVoltageSensor = hardwareMap.voltageSensor.iterator().next();
|
||||
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
telemetry.addLine("Your bot will go at full speed for " + RUNTIME + " seconds.");
|
||||
telemetry.addLine("Please ensure you have enough space cleared.");
|
||||
telemetry.addLine("");
|
||||
telemetry.addLine("Press start when ready.");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.update();
|
||||
|
||||
drive.setDrivePower(new Pose2d(1, 0, 0));
|
||||
timer = new ElapsedTime();
|
||||
|
||||
while (!isStopRequested() && timer.seconds() < RUNTIME) {
|
||||
drive.updatePoseEstimate();
|
||||
|
||||
Pose2d poseVelo = Objects.requireNonNull(drive.getPoseVelocity(), "poseVelocity() must not be null. Ensure that the getWheelVelocities() method has been overridden in your localizer.");
|
||||
|
||||
maxVelocity = Math.max(poseVelo.vec().norm(), maxVelocity);
|
||||
}
|
||||
|
||||
drive.setDrivePower(new Pose2d());
|
||||
|
||||
double effectiveKf = DriveConstants.getMotorVelocityF(veloInchesToTicks(maxVelocity));
|
||||
|
||||
telemetry.addData("Max Velocity", maxVelocity);
|
||||
telemetry.addData("Max Recommended Velocity", maxVelocity * 0.8);
|
||||
telemetry.addData("Voltage Compensated kF", effectiveKf * batteryVoltageSensor.getVoltage() / 12);
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested() && opModeIsActive()) idle();
|
||||
}
|
||||
|
||||
private double veloInchesToTicks(double inchesPerSec) {
|
||||
return inchesPerSec / (2 * Math.PI * DriveConstants.WHEEL_RADIUS) / DriveConstants.GEAR_RATIO * DriveConstants.TICKS_PER_REV;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,93 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/**
|
||||
* This is a simple teleop routine for debugging your motor configuration.
|
||||
* Pressing each of the buttons will power its respective motor.
|
||||
*
|
||||
* Button Mappings:
|
||||
*
|
||||
* Xbox/PS4 Button - Motor
|
||||
* X / ▢ - Front Left
|
||||
* Y / Δ - Front Right
|
||||
* B / O - Rear Right
|
||||
* A / X - Rear Left
|
||||
* The buttons are mapped to match the wheels spatially if you
|
||||
* were to rotate the gamepad 45deg°. x/square is the front left
|
||||
* ________ and each button corresponds to the wheel as you go clockwise
|
||||
* / ______ \
|
||||
* ------------.-' _ '-..+ Front of Bot
|
||||
* / _ ( Y ) _ \ ^
|
||||
* | ( X ) _ ( B ) | Front Left \ Front Right
|
||||
* ___ '. ( A ) /| Wheel \ Wheel
|
||||
* .' '. '-._____.-' .' (x/▢) \ (Y/Δ)
|
||||
* | | | \
|
||||
* '.___.' '. | Rear Left \ Rear Right
|
||||
* '. / Wheel \ Wheel
|
||||
* \. .' (A/X) \ (B/O)
|
||||
* \________/
|
||||
*
|
||||
* Uncomment the @Disabled tag below to use this opmode.
|
||||
*/
|
||||
@Disabled
|
||||
@Config
|
||||
@TeleOp(group = "drive")
|
||||
public class MotorDirectionDebugger extends LinearOpMode {
|
||||
public static double MOTOR_POWER = 0.7;
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
telemetry.addLine("Press play to begin the debugging opmode");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.setDisplayFormat(Telemetry.DisplayFormat.HTML);
|
||||
|
||||
while (!isStopRequested()) {
|
||||
telemetry.addLine("Press each button to turn on its respective motor");
|
||||
telemetry.addLine();
|
||||
telemetry.addLine("<font face=\"monospace\">Xbox/PS4 Button - Motor</font>");
|
||||
telemetry.addLine("<font face=\"monospace\"> X / ▢ - Front Left</font>");
|
||||
telemetry.addLine("<font face=\"monospace\"> Y / Δ - Front Right</font>");
|
||||
telemetry.addLine("<font face=\"monospace\"> B / O - Rear Right</font>");
|
||||
telemetry.addLine("<font face=\"monospace\"> A / X - Rear Left</font>");
|
||||
telemetry.addLine();
|
||||
|
||||
if(gamepad1.x) {
|
||||
drive.setMotorPowers(MOTOR_POWER, 0, 0, 0);
|
||||
telemetry.addLine("Running Motor: Front Left");
|
||||
} else if(gamepad1.y) {
|
||||
drive.setMotorPowers(0, 0, 0, MOTOR_POWER);
|
||||
telemetry.addLine("Running Motor: Front Right");
|
||||
} else if(gamepad1.b) {
|
||||
drive.setMotorPowers(0, 0, MOTOR_POWER, 0);
|
||||
telemetry.addLine("Running Motor: Rear Right");
|
||||
} else if(gamepad1.a) {
|
||||
drive.setMotorPowers(0, MOTOR_POWER, 0, 0);
|
||||
telemetry.addLine("Running Motor: Rear Left");
|
||||
} else {
|
||||
drive.setMotorPowers(0, 0, 0, 0);
|
||||
telemetry.addLine("Running Motor: None");
|
||||
}
|
||||
|
||||
telemetry.update();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,38 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.geometry.Vector2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/*
|
||||
* This is an example of a more complex path to really test the tuning.
|
||||
*/
|
||||
@Autonomous(group = "drive")
|
||||
public class SplineTest extends LinearOpMode {
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
Trajectory traj = drive.trajectoryBuilder(new Pose2d())
|
||||
.splineTo(new Vector2d(30, 30), 0)
|
||||
.build();
|
||||
|
||||
drive.followTrajectory(traj);
|
||||
|
||||
sleep(2000);
|
||||
|
||||
drive.followTrajectory(
|
||||
drive.trajectoryBuilder(traj.end(), true)
|
||||
.splineTo(new Vector2d(0, 0), Math.toRadians(180))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,46 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/*
|
||||
* This is a simple routine to test translational drive capabilities.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class StrafeTest extends LinearOpMode {
|
||||
public static double DISTANCE = 60; // in
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
Trajectory trajectory = drive.trajectoryBuilder(new Pose2d())
|
||||
.strafeRight(DISTANCE)
|
||||
.build();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
drive.followTrajectory(trajectory);
|
||||
|
||||
Pose2d poseEstimate = drive.getPoseEstimate();
|
||||
telemetry.addData("finalX", poseEstimate.getX());
|
||||
telemetry.addData("finalY", poseEstimate.getY());
|
||||
telemetry.addData("finalHeading", poseEstimate.getHeading());
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested() && opModeIsActive()) ;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,46 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/*
|
||||
* This is a simple routine to test translational drive capabilities.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class StraightTest extends LinearOpMode {
|
||||
public static double DISTANCE = 60; // in
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
Trajectory trajectory = drive.trajectoryBuilder(new Pose2d())
|
||||
.forward(DISTANCE)
|
||||
.build();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
drive.followTrajectory(trajectory);
|
||||
|
||||
Pose2d poseEstimate = drive.getPoseEstimate();
|
||||
telemetry.addData("finalX", poseEstimate.getX());
|
||||
telemetry.addData("finalY", poseEstimate.getY());
|
||||
telemetry.addData("finalHeading", poseEstimate.getHeading());
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested() && opModeIsActive()) ;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,88 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.util.Angle;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.util.MovingStatistics;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.robotcore.internal.system.Misc;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/*
|
||||
* This routine determines the effective track width. The procedure works by executing a point turn
|
||||
* with a given angle and measuring the difference between that angle and the actual angle (as
|
||||
* indicated by an external IMU/gyro, track wheels, or some other localizer). The quotient
|
||||
* given angle / actual angle gives a multiplicative adjustment to the estimated track width
|
||||
* (effective track width = estimated track width * given angle / actual angle). The routine repeats
|
||||
* this procedure a few times and averages the values for additional accuracy. Note: a relatively
|
||||
* accurate track width estimate is important or else the angular constraints will be thrown off.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class TrackWidthTuner extends LinearOpMode {
|
||||
public static double ANGLE = 180; // deg
|
||||
public static int NUM_TRIALS = 5;
|
||||
public static int DELAY = 1000; // ms
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
// TODO: if you haven't already, set the localizer to something that doesn't depend on
|
||||
// drive encoders for computing the heading
|
||||
|
||||
telemetry.addLine("Press play to begin the track width tuner routine");
|
||||
telemetry.addLine("Make sure your robot has enough clearance to turn smoothly");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Running...");
|
||||
telemetry.update();
|
||||
|
||||
MovingStatistics trackWidthStats = new MovingStatistics(NUM_TRIALS);
|
||||
for (int i = 0; i < NUM_TRIALS; i++) {
|
||||
drive.setPoseEstimate(new Pose2d());
|
||||
|
||||
// it is important to handle heading wraparounds
|
||||
double headingAccumulator = 0;
|
||||
double lastHeading = 0;
|
||||
|
||||
drive.turnAsync(Math.toRadians(ANGLE));
|
||||
|
||||
while (!isStopRequested() && drive.isBusy()) {
|
||||
double heading = drive.getPoseEstimate().getHeading();
|
||||
headingAccumulator += Angle.normDelta(heading - lastHeading);
|
||||
lastHeading = heading;
|
||||
|
||||
drive.update();
|
||||
}
|
||||
|
||||
double trackWidth = DriveConstants.TRACK_WIDTH * Math.toRadians(ANGLE) / headingAccumulator;
|
||||
trackWidthStats.add(trackWidth);
|
||||
|
||||
sleep(DELAY);
|
||||
}
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Tuning complete");
|
||||
telemetry.addLine(Misc.formatInvariant("Effective track width = %.2f (SE = %.3f)",
|
||||
trackWidthStats.getMean(),
|
||||
trackWidthStats.getStandardDeviation() / Math.sqrt(NUM_TRIALS)));
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested()) {
|
||||
idle();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,104 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.util.Angle;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.util.MovingStatistics;
|
||||
import com.qualcomm.robotcore.util.RobotLog;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.robotcore.internal.system.Misc;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.StandardTrackingWheelLocalizer;
|
||||
|
||||
/**
|
||||
* This routine determines the effective forward offset for the lateral tracking wheel.
|
||||
* The procedure executes a point turn at a given angle for a certain number of trials,
|
||||
* along with a specified delay in milliseconds. The purpose of this is to track the
|
||||
* change in the y position during the turn. The offset, or distance, of the lateral tracking
|
||||
* wheel from the center or rotation allows the wheel to spin during a point turn, leading
|
||||
* to an incorrect measurement for the y position. This creates an arc around around
|
||||
* the center of rotation with an arc length of change in y and a radius equal to the forward
|
||||
* offset. We can compute this offset by calculating (change in y position) / (change in heading)
|
||||
* which returns the radius if the angle (change in heading) is in radians. This is based
|
||||
* on the arc length formula of length = theta * radius.
|
||||
*
|
||||
* To run this routine, simply adjust the desired angle and specify the number of trials
|
||||
* and the desired delay. Then, run the procedure. Once it finishes, it will print the
|
||||
* average of all the calculated forward offsets derived from the calculation. This calculated
|
||||
* forward offset is then added onto the current forward offset to produce an overall estimate
|
||||
* for the forward offset. You can run this procedure as many times as necessary until a
|
||||
* satisfactory result is produced.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group="drive")
|
||||
public class TrackingWheelForwardOffsetTuner extends LinearOpMode {
|
||||
public static double ANGLE = 180; // deg
|
||||
public static int NUM_TRIALS = 5;
|
||||
public static int DELAY = 1000; // ms
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
Telemetry telemetry = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
if (!(drive.getLocalizer() instanceof StandardTrackingWheelLocalizer)) {
|
||||
RobotLog.setGlobalErrorMsg("StandardTrackingWheelLocalizer is not being set in the "
|
||||
+ "drive class. Ensure that \"setLocalizer(new StandardTrackingWheelLocalizer"
|
||||
+ "(hardwareMap));\" is called in SampleMecanumDrive.java");
|
||||
}
|
||||
|
||||
telemetry.addLine("Press play to begin the forward offset tuner");
|
||||
telemetry.addLine("Make sure your robot has enough clearance to turn smoothly");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Running...");
|
||||
telemetry.update();
|
||||
|
||||
MovingStatistics forwardOffsetStats = new MovingStatistics(NUM_TRIALS);
|
||||
for (int i = 0; i < NUM_TRIALS; i++) {
|
||||
drive.setPoseEstimate(new Pose2d());
|
||||
|
||||
// it is important to handle heading wraparounds
|
||||
double headingAccumulator = 0;
|
||||
double lastHeading = 0;
|
||||
|
||||
drive.turnAsync(Math.toRadians(ANGLE));
|
||||
|
||||
while (!isStopRequested() && drive.isBusy()) {
|
||||
double heading = drive.getPoseEstimate().getHeading();
|
||||
headingAccumulator += Angle.norm(heading - lastHeading);
|
||||
lastHeading = heading;
|
||||
|
||||
drive.update();
|
||||
}
|
||||
|
||||
double forwardOffset = StandardTrackingWheelLocalizer.FORWARD_OFFSET +
|
||||
drive.getPoseEstimate().getY() / headingAccumulator;
|
||||
forwardOffsetStats.add(forwardOffset);
|
||||
|
||||
sleep(DELAY);
|
||||
}
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Tuning complete");
|
||||
telemetry.addLine(Misc.formatInvariant("Effective forward offset = %.2f (SE = %.3f)",
|
||||
forwardOffsetStats.getMean(),
|
||||
forwardOffsetStats.getStandardDeviation() / Math.sqrt(NUM_TRIALS)));
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested()) {
|
||||
idle();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,130 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.util.Angle;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.util.RobotLog;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.StandardTrackingWheelLocalizer;
|
||||
|
||||
/**
|
||||
* Opmode designed to assist the user in tuning the `StandardTrackingWheelLocalizer`'s
|
||||
* LATERAL_DISTANCE value. The LATERAL_DISTANCE is the center-to-center distance of the parallel
|
||||
* wheels.
|
||||
*
|
||||
* Tuning Routine:
|
||||
*
|
||||
* 1. Set the LATERAL_DISTANCE value in StandardTrackingWheelLocalizer.java to the physical
|
||||
* measured value. This need only be an estimated value as you will be tuning it anyways.
|
||||
*
|
||||
* 2. Make a mark on the bot (with a piece of tape or sharpie or however you wish) and make an
|
||||
* similar mark right below the indicator on your bot. This will be your reference point to
|
||||
* ensure you've turned exactly 360°.
|
||||
*
|
||||
* 3. Although not entirely necessary, having the bot's pose being drawn in dashbooard does help
|
||||
* identify discrepancies in the LATERAL_DISTANCE value. To access the dashboard,
|
||||
* connect your computer to the RC's WiFi network. In your browser, navigate to
|
||||
* https://192.168.49.1:8080/dash if you're using the RC phone or https://192.168.43.1:8080/dash
|
||||
* if you are using the Control Hub.
|
||||
* Ensure the field is showing (select the field view in top right of the page).
|
||||
*
|
||||
* 4. Press play to begin the tuning routine.
|
||||
*
|
||||
* 5. Use the right joystick on gamepad 1 to turn the bot counterclockwise.
|
||||
*
|
||||
* 6. Spin the bot 10 times, counterclockwise. Make sure to keep track of these turns.
|
||||
*
|
||||
* 7. Once the bot has finished spinning 10 times, press A to finishing the routine. The indicators
|
||||
* on the bot and on the ground you created earlier should be lined up.
|
||||
*
|
||||
* 8. Your effective LATERAL_DISTANCE will be given. Stick this value into your
|
||||
* StandardTrackingWheelLocalizer.java class.
|
||||
*
|
||||
* 9. If this value is incorrect, run the routine again while adjusting the LATERAL_DISTANCE value
|
||||
* yourself. Read the heading output and follow the advice stated in the note below to manually
|
||||
* nudge the values yourself.
|
||||
*
|
||||
* Note:
|
||||
* It helps to pay attention to how the pose on the field is drawn in dashboard. A blue circle with
|
||||
* a line from the circumference to the center should be present, representing the bot. The line
|
||||
* indicates forward. If your LATERAL_DISTANCE value is tuned currently, the pose drawn in
|
||||
* dashboard should keep track with the pose of your actual bot. If the drawn bot turns slower than
|
||||
* the actual bot, the LATERAL_DISTANCE should be decreased. If the drawn bot turns faster than the
|
||||
* actual bot, the LATERAL_DISTANCE should be increased.
|
||||
*
|
||||
* If your drawn bot oscillates around a point in dashboard, don't worry. This is because the
|
||||
* position of the perpendicular wheel isn't perfectly set and causes a discrepancy in the
|
||||
* effective center of rotation. You can ignore this effect. The center of rotation will be offset
|
||||
* slightly but your heading will still be fine. This does not affect your overall tracking
|
||||
* precision. The heading should still line up.
|
||||
*/
|
||||
@Config
|
||||
@TeleOp(group = "drive")
|
||||
public class TrackingWheelLateralDistanceTuner extends LinearOpMode {
|
||||
public static int NUM_TURNS = 10;
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
if (!(drive.getLocalizer() instanceof StandardTrackingWheelLocalizer)) {
|
||||
RobotLog.setGlobalErrorMsg("StandardTrackingWheelLocalizer is not being set in the "
|
||||
+ "drive class. Ensure that \"setLocalizer(new StandardTrackingWheelLocalizer"
|
||||
+ "(hardwareMap));\" is called in SampleMecanumDrive.java");
|
||||
}
|
||||
|
||||
telemetry.addLine("Prior to beginning the routine, please read the directions "
|
||||
+ "located in the comments of the opmode file.");
|
||||
telemetry.addLine("Press play to begin the tuning routine.");
|
||||
telemetry.addLine("");
|
||||
telemetry.addLine("Press Y/△ to stop the routine.");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.update();
|
||||
|
||||
double headingAccumulator = 0;
|
||||
double lastHeading = 0;
|
||||
|
||||
boolean tuningFinished = false;
|
||||
|
||||
while (!isStopRequested() && !tuningFinished) {
|
||||
Pose2d vel = new Pose2d(0, 0, -gamepad1.right_stick_x);
|
||||
drive.setDrivePower(vel);
|
||||
|
||||
drive.update();
|
||||
|
||||
double heading = drive.getPoseEstimate().getHeading();
|
||||
double deltaHeading = heading - lastHeading;
|
||||
|
||||
headingAccumulator += Angle.normDelta(deltaHeading);
|
||||
lastHeading = heading;
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Total Heading (deg): " + Math.toDegrees(headingAccumulator));
|
||||
telemetry.addLine("Raw Heading (deg): " + Math.toDegrees(heading));
|
||||
telemetry.addLine();
|
||||
telemetry.addLine("Press Y/△ to conclude routine");
|
||||
telemetry.update();
|
||||
|
||||
if (gamepad1.y)
|
||||
tuningFinished = true;
|
||||
}
|
||||
|
||||
telemetry.clearAll();
|
||||
telemetry.addLine("Localizer's total heading: " + Math.toDegrees(headingAccumulator) + "°");
|
||||
telemetry.addLine("Effective LATERAL_DISTANCE: " +
|
||||
(headingAccumulator / (NUM_TURNS * Math.PI * 2)) * StandardTrackingWheelLocalizer.LATERAL_DISTANCE);
|
||||
|
||||
telemetry.update();
|
||||
|
||||
while (!isStopRequested()) idle();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.opmode;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
|
||||
/*
|
||||
* This is a simple routine to test turning capabilities.
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(group = "drive")
|
||||
public class TurnTest extends LinearOpMode {
|
||||
public static double ANGLE = 90; // deg
|
||||
|
||||
@Override
|
||||
public void runOpMode() throws InterruptedException {
|
||||
MecanumDrive drive = new MecanumDrive(hardwareMap);
|
||||
|
||||
waitForStart();
|
||||
|
||||
if (isStopRequested()) return;
|
||||
|
||||
drive.turn(Math.toRadians(ANGLE));
|
||||
}
|
||||
}
|
|
@ -0,0 +1,4 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence;
|
||||
|
||||
|
||||
public class EmptySequenceException extends RuntimeException { }
|
|
@ -0,0 +1,44 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.SequenceSegment;
|
||||
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
public class TrajectorySequence {
|
||||
private final List<SequenceSegment> sequenceList;
|
||||
|
||||
public TrajectorySequence(List<SequenceSegment> sequenceList) {
|
||||
if (sequenceList.size() == 0) throw new EmptySequenceException();
|
||||
|
||||
this.sequenceList = Collections.unmodifiableList(sequenceList);
|
||||
}
|
||||
|
||||
public Pose2d start() {
|
||||
return sequenceList.get(0).getStartPose();
|
||||
}
|
||||
|
||||
public Pose2d end() {
|
||||
return sequenceList.get(sequenceList.size() - 1).getEndPose();
|
||||
}
|
||||
|
||||
public double duration() {
|
||||
double total = 0.0;
|
||||
|
||||
for (SequenceSegment segment : sequenceList) {
|
||||
total += segment.getDuration();
|
||||
}
|
||||
|
||||
return total;
|
||||
}
|
||||
|
||||
public SequenceSegment get(int i) {
|
||||
return sequenceList.get(i);
|
||||
}
|
||||
|
||||
public int size() {
|
||||
return sequenceList.size();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,711 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.geometry.Vector2d;
|
||||
import com.acmerobotics.roadrunner.path.PathContinuityViolationException;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfile;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfileGenerator;
|
||||
import com.acmerobotics.roadrunner.profile.MotionState;
|
||||
import com.acmerobotics.roadrunner.trajectory.DisplacementMarker;
|
||||
import com.acmerobotics.roadrunner.trajectory.DisplacementProducer;
|
||||
import com.acmerobotics.roadrunner.trajectory.MarkerCallback;
|
||||
import com.acmerobotics.roadrunner.trajectory.SpatialMarker;
|
||||
import com.acmerobotics.roadrunner.trajectory.TemporalMarker;
|
||||
import com.acmerobotics.roadrunner.trajectory.TimeProducer;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryBuilder;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryMarker;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.TrajectoryAccelerationConstraint;
|
||||
import com.acmerobotics.roadrunner.trajectory.constraints.TrajectoryVelocityConstraint;
|
||||
import com.acmerobotics.roadrunner.util.Angle;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.SequenceSegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.TrajectorySegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.TurnSegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.WaitSegment;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
|
||||
public class TrajectorySequenceBuilder {
|
||||
private final double resolution = 0.25;
|
||||
|
||||
private final TrajectoryVelocityConstraint baseVelConstraint;
|
||||
private final TrajectoryAccelerationConstraint baseAccelConstraint;
|
||||
|
||||
private TrajectoryVelocityConstraint currentVelConstraint;
|
||||
private TrajectoryAccelerationConstraint currentAccelConstraint;
|
||||
|
||||
private final double baseTurnConstraintMaxAngVel;
|
||||
private final double baseTurnConstraintMaxAngAccel;
|
||||
|
||||
private double currentTurnConstraintMaxAngVel;
|
||||
private double currentTurnConstraintMaxAngAccel;
|
||||
|
||||
private final List<SequenceSegment> sequenceSegments;
|
||||
|
||||
private final List<TemporalMarker> temporalMarkers;
|
||||
private final List<DisplacementMarker> displacementMarkers;
|
||||
private final List<SpatialMarker> spatialMarkers;
|
||||
|
||||
private Pose2d lastPose;
|
||||
|
||||
private double tangentOffset;
|
||||
|
||||
private boolean setAbsoluteTangent;
|
||||
private double absoluteTangent;
|
||||
|
||||
private TrajectoryBuilder currentTrajectoryBuilder;
|
||||
|
||||
private double currentDuration;
|
||||
private double currentDisplacement;
|
||||
|
||||
private double lastDurationTraj;
|
||||
private double lastDisplacementTraj;
|
||||
|
||||
public TrajectorySequenceBuilder(
|
||||
Pose2d startPose,
|
||||
Double startTangent,
|
||||
TrajectoryVelocityConstraint baseVelConstraint,
|
||||
TrajectoryAccelerationConstraint baseAccelConstraint,
|
||||
double baseTurnConstraintMaxAngVel,
|
||||
double baseTurnConstraintMaxAngAccel
|
||||
) {
|
||||
this.baseVelConstraint = baseVelConstraint;
|
||||
this.baseAccelConstraint = baseAccelConstraint;
|
||||
|
||||
this.currentVelConstraint = baseVelConstraint;
|
||||
this.currentAccelConstraint = baseAccelConstraint;
|
||||
|
||||
this.baseTurnConstraintMaxAngVel = baseTurnConstraintMaxAngVel;
|
||||
this.baseTurnConstraintMaxAngAccel = baseTurnConstraintMaxAngAccel;
|
||||
|
||||
this.currentTurnConstraintMaxAngVel = baseTurnConstraintMaxAngVel;
|
||||
this.currentTurnConstraintMaxAngAccel = baseTurnConstraintMaxAngAccel;
|
||||
|
||||
sequenceSegments = new ArrayList<>();
|
||||
|
||||
temporalMarkers = new ArrayList<>();
|
||||
displacementMarkers = new ArrayList<>();
|
||||
spatialMarkers = new ArrayList<>();
|
||||
|
||||
lastPose = startPose;
|
||||
|
||||
tangentOffset = 0.0;
|
||||
|
||||
setAbsoluteTangent = (startTangent != null);
|
||||
absoluteTangent = startTangent != null ? startTangent : 0.0;
|
||||
|
||||
currentTrajectoryBuilder = null;
|
||||
|
||||
currentDuration = 0.0;
|
||||
currentDisplacement = 0.0;
|
||||
|
||||
lastDurationTraj = 0.0;
|
||||
lastDisplacementTraj = 0.0;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder(
|
||||
Pose2d startPose,
|
||||
TrajectoryVelocityConstraint baseVelConstraint,
|
||||
TrajectoryAccelerationConstraint baseAccelConstraint,
|
||||
double baseTurnConstraintMaxAngVel,
|
||||
double baseTurnConstraintMaxAngAccel
|
||||
) {
|
||||
this(
|
||||
startPose, null,
|
||||
baseVelConstraint, baseAccelConstraint,
|
||||
baseTurnConstraintMaxAngVel, baseTurnConstraintMaxAngAccel
|
||||
);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineTo(Vector2d endPosition) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineTo(endPosition, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineTo(
|
||||
Vector2d endPosition,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineTo(endPosition, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineToConstantHeading(Vector2d endPosition) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineToConstantHeading(endPosition, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineToConstantHeading(
|
||||
Vector2d endPosition,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineToConstantHeading(endPosition, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineToLinearHeading(Pose2d endPose) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineToLinearHeading(endPose, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineToLinearHeading(
|
||||
Pose2d endPose,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineToLinearHeading(endPose, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineToSplineHeading(Pose2d endPose) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineToSplineHeading(endPose, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder lineToSplineHeading(
|
||||
Pose2d endPose,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.lineToSplineHeading(endPose, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder strafeTo(Vector2d endPosition) {
|
||||
return addPath(() -> currentTrajectoryBuilder.strafeTo(endPosition, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder strafeTo(
|
||||
Vector2d endPosition,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.strafeTo(endPosition, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder forward(double distance) {
|
||||
return addPath(() -> currentTrajectoryBuilder.forward(distance, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder forward(
|
||||
double distance,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.forward(distance, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder back(double distance) {
|
||||
return addPath(() -> currentTrajectoryBuilder.back(distance, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder back(
|
||||
double distance,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.back(distance, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder strafeLeft(double distance) {
|
||||
return addPath(() -> currentTrajectoryBuilder.strafeLeft(distance, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder strafeLeft(
|
||||
double distance,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.strafeLeft(distance, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder strafeRight(double distance) {
|
||||
return addPath(() -> currentTrajectoryBuilder.strafeRight(distance, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder strafeRight(
|
||||
double distance,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.strafeRight(distance, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineTo(Vector2d endPosition, double endHeading) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineTo(endPosition, endHeading, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineTo(
|
||||
Vector2d endPosition,
|
||||
double endHeading,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineTo(endPosition, endHeading, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineToConstantHeading(Vector2d endPosition, double endHeading) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineToConstantHeading(endPosition, endHeading, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineToConstantHeading(
|
||||
Vector2d endPosition,
|
||||
double endHeading,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineToConstantHeading(endPosition, endHeading, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineToLinearHeading(Pose2d endPose, double endHeading) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineToLinearHeading(endPose, endHeading, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineToLinearHeading(
|
||||
Pose2d endPose,
|
||||
double endHeading,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineToLinearHeading(endPose, endHeading, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineToSplineHeading(Pose2d endPose, double endHeading) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineToSplineHeading(endPose, endHeading, currentVelConstraint, currentAccelConstraint));
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder splineToSplineHeading(
|
||||
Pose2d endPose,
|
||||
double endHeading,
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
return addPath(() -> currentTrajectoryBuilder.splineToSplineHeading(endPose, endHeading, velConstraint, accelConstraint));
|
||||
}
|
||||
|
||||
private TrajectorySequenceBuilder addPath(AddPathCallback callback) {
|
||||
if (currentTrajectoryBuilder == null) newPath();
|
||||
|
||||
try {
|
||||
callback.run();
|
||||
} catch (PathContinuityViolationException e) {
|
||||
newPath();
|
||||
callback.run();
|
||||
}
|
||||
|
||||
Trajectory builtTraj = currentTrajectoryBuilder.build();
|
||||
|
||||
double durationDifference = builtTraj.duration() - lastDurationTraj;
|
||||
double displacementDifference = builtTraj.getPath().length() - lastDisplacementTraj;
|
||||
|
||||
lastPose = builtTraj.end();
|
||||
currentDuration += durationDifference;
|
||||
currentDisplacement += displacementDifference;
|
||||
|
||||
lastDurationTraj = builtTraj.duration();
|
||||
lastDisplacementTraj = builtTraj.getPath().length();
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder setTangent(double tangent) {
|
||||
setAbsoluteTangent = true;
|
||||
absoluteTangent = tangent;
|
||||
|
||||
pushPath();
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
private TrajectorySequenceBuilder setTangentOffset(double offset) {
|
||||
setAbsoluteTangent = false;
|
||||
|
||||
this.tangentOffset = offset;
|
||||
this.pushPath();
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder setReversed(boolean reversed) {
|
||||
return reversed ? this.setTangentOffset(Math.toRadians(180.0)) : this.setTangentOffset(0.0);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder setConstraints(
|
||||
TrajectoryVelocityConstraint velConstraint,
|
||||
TrajectoryAccelerationConstraint accelConstraint
|
||||
) {
|
||||
this.currentVelConstraint = velConstraint;
|
||||
this.currentAccelConstraint = accelConstraint;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder resetConstraints() {
|
||||
this.currentVelConstraint = this.baseVelConstraint;
|
||||
this.currentAccelConstraint = this.baseAccelConstraint;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder setVelConstraint(TrajectoryVelocityConstraint velConstraint) {
|
||||
this.currentVelConstraint = velConstraint;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder resetVelConstraint() {
|
||||
this.currentVelConstraint = this.baseVelConstraint;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder setAccelConstraint(TrajectoryAccelerationConstraint accelConstraint) {
|
||||
this.currentAccelConstraint = accelConstraint;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder resetAccelConstraint() {
|
||||
this.currentAccelConstraint = this.baseAccelConstraint;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder setTurnConstraint(double maxAngVel, double maxAngAccel) {
|
||||
this.currentTurnConstraintMaxAngVel = maxAngVel;
|
||||
this.currentTurnConstraintMaxAngAccel = maxAngAccel;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder resetTurnConstraint() {
|
||||
this.currentTurnConstraintMaxAngVel = baseTurnConstraintMaxAngVel;
|
||||
this.currentTurnConstraintMaxAngAccel = baseTurnConstraintMaxAngAccel;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addTemporalMarker(MarkerCallback callback) {
|
||||
return this.addTemporalMarker(currentDuration, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder UNSTABLE_addTemporalMarkerOffset(double offset, MarkerCallback callback) {
|
||||
return this.addTemporalMarker(currentDuration + offset, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addTemporalMarker(double time, MarkerCallback callback) {
|
||||
return this.addTemporalMarker(0.0, time, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addTemporalMarker(double scale, double offset, MarkerCallback callback) {
|
||||
return this.addTemporalMarker(time -> scale * time + offset, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addTemporalMarker(TimeProducer time, MarkerCallback callback) {
|
||||
this.temporalMarkers.add(new TemporalMarker(time, callback));
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addSpatialMarker(Vector2d point, MarkerCallback callback) {
|
||||
this.spatialMarkers.add(new SpatialMarker(point, callback));
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addDisplacementMarker(MarkerCallback callback) {
|
||||
return this.addDisplacementMarker(currentDisplacement, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder UNSTABLE_addDisplacementMarkerOffset(double offset, MarkerCallback callback) {
|
||||
return this.addDisplacementMarker(currentDisplacement + offset, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addDisplacementMarker(double displacement, MarkerCallback callback) {
|
||||
return this.addDisplacementMarker(0.0, displacement, callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addDisplacementMarker(double scale, double offset, MarkerCallback callback) {
|
||||
return addDisplacementMarker((displacement -> scale * displacement + offset), callback);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addDisplacementMarker(DisplacementProducer displacement, MarkerCallback callback) {
|
||||
displacementMarkers.add(new DisplacementMarker(displacement, callback));
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder turn(double angle) {
|
||||
return turn(angle, currentTurnConstraintMaxAngVel, currentTurnConstraintMaxAngAccel);
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder turn(double angle, double maxAngVel, double maxAngAccel) {
|
||||
pushPath();
|
||||
|
||||
MotionProfile turnProfile = MotionProfileGenerator.generateSimpleMotionProfile(
|
||||
new MotionState(lastPose.getHeading(), 0.0, 0.0, 0.0),
|
||||
new MotionState(lastPose.getHeading() + angle, 0.0, 0.0, 0.0),
|
||||
maxAngVel,
|
||||
maxAngAccel
|
||||
);
|
||||
|
||||
sequenceSegments.add(new TurnSegment(lastPose, angle, turnProfile, Collections.emptyList()));
|
||||
|
||||
lastPose = new Pose2d(
|
||||
lastPose.getX(), lastPose.getY(),
|
||||
Angle.norm(lastPose.getHeading() + angle)
|
||||
);
|
||||
|
||||
currentDuration += turnProfile.duration();
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder waitSeconds(double seconds) {
|
||||
pushPath();
|
||||
sequenceSegments.add(new WaitSegment(lastPose, seconds, Collections.emptyList()));
|
||||
|
||||
currentDuration += seconds;
|
||||
return this;
|
||||
}
|
||||
|
||||
public TrajectorySequenceBuilder addTrajectory(Trajectory trajectory) {
|
||||
pushPath();
|
||||
|
||||
sequenceSegments.add(new TrajectorySegment(trajectory));
|
||||
return this;
|
||||
}
|
||||
|
||||
private void pushPath() {
|
||||
if (currentTrajectoryBuilder != null) {
|
||||
Trajectory builtTraj = currentTrajectoryBuilder.build();
|
||||
sequenceSegments.add(new TrajectorySegment(builtTraj));
|
||||
}
|
||||
|
||||
currentTrajectoryBuilder = null;
|
||||
}
|
||||
|
||||
private void newPath() {
|
||||
if (currentTrajectoryBuilder != null)
|
||||
pushPath();
|
||||
|
||||
lastDurationTraj = 0.0;
|
||||
lastDisplacementTraj = 0.0;
|
||||
|
||||
double tangent = setAbsoluteTangent ? absoluteTangent : Angle.norm(lastPose.getHeading() + tangentOffset);
|
||||
|
||||
currentTrajectoryBuilder = new TrajectoryBuilder(lastPose, tangent, currentVelConstraint, currentAccelConstraint, resolution);
|
||||
}
|
||||
|
||||
public TrajectorySequence build() {
|
||||
pushPath();
|
||||
|
||||
List<TrajectoryMarker> globalMarkers = convertMarkersToGlobal(
|
||||
sequenceSegments,
|
||||
temporalMarkers, displacementMarkers, spatialMarkers
|
||||
);
|
||||
|
||||
return new TrajectorySequence(projectGlobalMarkersToLocalSegments(globalMarkers, sequenceSegments));
|
||||
}
|
||||
|
||||
private List<TrajectoryMarker> convertMarkersToGlobal(
|
||||
List<SequenceSegment> sequenceSegments,
|
||||
List<TemporalMarker> temporalMarkers,
|
||||
List<DisplacementMarker> displacementMarkers,
|
||||
List<SpatialMarker> spatialMarkers
|
||||
) {
|
||||
ArrayList<TrajectoryMarker> trajectoryMarkers = new ArrayList<>();
|
||||
|
||||
// Convert temporal markers
|
||||
for (TemporalMarker marker : temporalMarkers) {
|
||||
trajectoryMarkers.add(
|
||||
new TrajectoryMarker(marker.getProducer().produce(currentDuration), marker.getCallback())
|
||||
);
|
||||
}
|
||||
|
||||
// Convert displacement markers
|
||||
for (DisplacementMarker marker : displacementMarkers) {
|
||||
double time = displacementToTime(
|
||||
sequenceSegments,
|
||||
marker.getProducer().produce(currentDisplacement)
|
||||
);
|
||||
|
||||
trajectoryMarkers.add(
|
||||
new TrajectoryMarker(
|
||||
time,
|
||||
marker.getCallback()
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// Convert spatial markers
|
||||
for (SpatialMarker marker : spatialMarkers) {
|
||||
trajectoryMarkers.add(
|
||||
new TrajectoryMarker(
|
||||
pointToTime(sequenceSegments, marker.getPoint()),
|
||||
marker.getCallback()
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
return trajectoryMarkers;
|
||||
}
|
||||
|
||||
private List<SequenceSegment> projectGlobalMarkersToLocalSegments(List<TrajectoryMarker> markers, List<SequenceSegment> sequenceSegments) {
|
||||
if (sequenceSegments.isEmpty()) return Collections.emptyList();
|
||||
|
||||
markers.sort(Comparator.comparingDouble(TrajectoryMarker::getTime));
|
||||
|
||||
int segmentIndex = 0;
|
||||
double currentTime = 0;
|
||||
|
||||
for (TrajectoryMarker marker : markers) {
|
||||
SequenceSegment segment = null;
|
||||
|
||||
double markerTime = marker.getTime();
|
||||
double segmentOffsetTime = 0;
|
||||
|
||||
while (segmentIndex < sequenceSegments.size()) {
|
||||
SequenceSegment seg = sequenceSegments.get(segmentIndex);
|
||||
|
||||
if (currentTime + seg.getDuration() >= markerTime) {
|
||||
segment = seg;
|
||||
segmentOffsetTime = markerTime - currentTime;
|
||||
break;
|
||||
} else {
|
||||
currentTime += seg.getDuration();
|
||||
segmentIndex++;
|
||||
}
|
||||
}
|
||||
if (segmentIndex >= sequenceSegments.size()) {
|
||||
segment = sequenceSegments.get(sequenceSegments.size()-1);
|
||||
segmentOffsetTime = segment.getDuration();
|
||||
}
|
||||
|
||||
SequenceSegment newSegment = null;
|
||||
|
||||
if (segment instanceof WaitSegment) {
|
||||
WaitSegment thisSegment = (WaitSegment) segment;
|
||||
|
||||
List<TrajectoryMarker> newMarkers = new ArrayList<>(thisSegment.getMarkers());
|
||||
newMarkers.add(new TrajectoryMarker(segmentOffsetTime, marker.getCallback()));
|
||||
|
||||
newSegment = new WaitSegment(thisSegment.getStartPose(), thisSegment.getDuration(), newMarkers);
|
||||
} else if (segment instanceof TurnSegment) {
|
||||
TurnSegment thisSegment = (TurnSegment) segment;
|
||||
|
||||
List<TrajectoryMarker> newMarkers = new ArrayList<>(thisSegment.getMarkers());
|
||||
newMarkers.add(new TrajectoryMarker(segmentOffsetTime, marker.getCallback()));
|
||||
|
||||
newSegment = new TurnSegment(thisSegment.getStartPose(), thisSegment.getTotalRotation(), thisSegment.getMotionProfile(), newMarkers);
|
||||
} else if (segment instanceof TrajectorySegment) {
|
||||
TrajectorySegment thisSegment = (TrajectorySegment) segment;
|
||||
|
||||
List<TrajectoryMarker> newMarkers = new ArrayList<>(thisSegment.getTrajectory().getMarkers());
|
||||
newMarkers.add(new TrajectoryMarker(segmentOffsetTime, marker.getCallback()));
|
||||
|
||||
newSegment = new TrajectorySegment(new Trajectory(thisSegment.getTrajectory().getPath(), thisSegment.getTrajectory().getProfile(), newMarkers));
|
||||
}
|
||||
|
||||
sequenceSegments.set(segmentIndex, newSegment);
|
||||
}
|
||||
|
||||
return sequenceSegments;
|
||||
}
|
||||
|
||||
// Taken from Road Runner's TrajectoryGenerator.displacementToTime() since it's private
|
||||
// note: this assumes that the profile position is monotonic increasing
|
||||
private Double motionProfileDisplacementToTime(MotionProfile profile, double s) {
|
||||
double tLo = 0.0;
|
||||
double tHi = profile.duration();
|
||||
while (!(Math.abs(tLo - tHi) < 1e-6)) {
|
||||
double tMid = 0.5 * (tLo + tHi);
|
||||
if (profile.get(tMid).getX() > s) {
|
||||
tHi = tMid;
|
||||
} else {
|
||||
tLo = tMid;
|
||||
}
|
||||
}
|
||||
return 0.5 * (tLo + tHi);
|
||||
}
|
||||
|
||||
private Double displacementToTime(List<SequenceSegment> sequenceSegments, double s) {
|
||||
double currentTime = 0.0;
|
||||
double currentDisplacement = 0.0;
|
||||
|
||||
for (SequenceSegment segment : sequenceSegments) {
|
||||
if (segment instanceof TrajectorySegment) {
|
||||
TrajectorySegment thisSegment = (TrajectorySegment) segment;
|
||||
|
||||
double segmentLength = thisSegment.getTrajectory().getPath().length();
|
||||
|
||||
if (currentDisplacement + segmentLength > s) {
|
||||
double target = s - currentDisplacement;
|
||||
double timeInSegment = motionProfileDisplacementToTime(
|
||||
thisSegment.getTrajectory().getProfile(),
|
||||
target
|
||||
);
|
||||
|
||||
return currentTime + timeInSegment;
|
||||
} else {
|
||||
currentDisplacement += segmentLength;
|
||||
currentTime += thisSegment.getTrajectory().duration();
|
||||
}
|
||||
} else {
|
||||
currentTime += segment.getDuration();
|
||||
}
|
||||
}
|
||||
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
private Double pointToTime(List<SequenceSegment> sequenceSegments, Vector2d point) {
|
||||
class ComparingPoints {
|
||||
private final double distanceToPoint;
|
||||
private final double totalDisplacement;
|
||||
private final double thisPathDisplacement;
|
||||
|
||||
public ComparingPoints(double distanceToPoint, double totalDisplacement, double thisPathDisplacement) {
|
||||
this.distanceToPoint = distanceToPoint;
|
||||
this.totalDisplacement = totalDisplacement;
|
||||
this.thisPathDisplacement = thisPathDisplacement;
|
||||
}
|
||||
}
|
||||
|
||||
List<ComparingPoints> projectedPoints = new ArrayList<>();
|
||||
|
||||
for (SequenceSegment segment : sequenceSegments) {
|
||||
if (segment instanceof TrajectorySegment) {
|
||||
TrajectorySegment thisSegment = (TrajectorySegment) segment;
|
||||
|
||||
double displacement = thisSegment.getTrajectory().getPath().project(point, 0.25);
|
||||
Vector2d projectedPoint = thisSegment.getTrajectory().getPath().get(displacement).vec();
|
||||
double distanceToPoint = point.minus(projectedPoint).norm();
|
||||
|
||||
double totalDisplacement = 0.0;
|
||||
|
||||
for (ComparingPoints comparingPoint : projectedPoints) {
|
||||
totalDisplacement += comparingPoint.totalDisplacement;
|
||||
}
|
||||
|
||||
totalDisplacement += displacement;
|
||||
|
||||
projectedPoints.add(new ComparingPoints(distanceToPoint, displacement, totalDisplacement));
|
||||
}
|
||||
}
|
||||
|
||||
ComparingPoints closestPoint = null;
|
||||
|
||||
for (ComparingPoints comparingPoint : projectedPoints) {
|
||||
if (closestPoint == null) {
|
||||
closestPoint = comparingPoint;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (comparingPoint.distanceToPoint < closestPoint.distanceToPoint)
|
||||
closestPoint = comparingPoint;
|
||||
}
|
||||
|
||||
return displacementToTime(sequenceSegments, closestPoint.thisPathDisplacement);
|
||||
}
|
||||
|
||||
private interface AddPathCallback {
|
||||
void run();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,307 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence;
|
||||
|
||||
import androidx.annotation.Nullable;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.canvas.Canvas;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
|
||||
import com.acmerobotics.roadrunner.control.PIDCoefficients;
|
||||
import com.acmerobotics.roadrunner.control.PIDFController;
|
||||
import com.acmerobotics.roadrunner.drive.DriveSignal;
|
||||
import com.acmerobotics.roadrunner.followers.TrajectoryFollower;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.profile.MotionState;
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryMarker;
|
||||
import com.acmerobotics.roadrunner.util.NanoClock;
|
||||
import com.qualcomm.robotcore.hardware.VoltageSensor;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.SequenceSegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.TrajectorySegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.TurnSegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment.WaitSegment;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.util.DashboardUtil;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.util.LogFiles;
|
||||
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.LinkedList;
|
||||
import java.util.List;
|
||||
|
||||
@Config
|
||||
public class TrajectorySequenceRunner {
|
||||
public static String COLOR_INACTIVE_TRAJECTORY = "#4caf507a";
|
||||
public static String COLOR_INACTIVE_TURN = "#7c4dff7a";
|
||||
public static String COLOR_INACTIVE_WAIT = "#dd2c007a";
|
||||
|
||||
public static String COLOR_ACTIVE_TRAJECTORY = "#4CAF50";
|
||||
public static String COLOR_ACTIVE_TURN = "#7c4dff";
|
||||
public static String COLOR_ACTIVE_WAIT = "#dd2c00";
|
||||
|
||||
public static int POSE_HISTORY_LIMIT = 100;
|
||||
|
||||
private final TrajectoryFollower follower;
|
||||
|
||||
private final PIDFController turnController;
|
||||
|
||||
private final NanoClock clock;
|
||||
|
||||
private TrajectorySequence currentTrajectorySequence;
|
||||
private double currentSegmentStartTime;
|
||||
private int currentSegmentIndex;
|
||||
private int lastSegmentIndex;
|
||||
|
||||
private Pose2d lastPoseError = new Pose2d();
|
||||
|
||||
List<TrajectoryMarker> remainingMarkers = new ArrayList<>();
|
||||
|
||||
private final FtcDashboard dashboard;
|
||||
private final LinkedList<Pose2d> poseHistory = new LinkedList<>();
|
||||
|
||||
private VoltageSensor voltageSensor;
|
||||
|
||||
private List<Integer> lastDriveEncPositions, lastDriveEncVels, lastTrackingEncPositions, lastTrackingEncVels;
|
||||
|
||||
public TrajectorySequenceRunner(
|
||||
TrajectoryFollower follower, PIDCoefficients headingPIDCoefficients, VoltageSensor voltageSensor,
|
||||
List<Integer> lastDriveEncPositions, List<Integer> lastDriveEncVels, List<Integer> lastTrackingEncPositions, List<Integer> lastTrackingEncVels
|
||||
) {
|
||||
this.follower = follower;
|
||||
|
||||
turnController = new PIDFController(headingPIDCoefficients);
|
||||
turnController.setInputBounds(0, 2 * Math.PI);
|
||||
|
||||
this.voltageSensor = voltageSensor;
|
||||
|
||||
this.lastDriveEncPositions = lastDriveEncPositions;
|
||||
this.lastDriveEncVels = lastDriveEncVels;
|
||||
this.lastTrackingEncPositions = lastTrackingEncPositions;
|
||||
this.lastTrackingEncVels = lastTrackingEncVels;
|
||||
|
||||
clock = NanoClock.system();
|
||||
|
||||
dashboard = FtcDashboard.getInstance();
|
||||
dashboard.setTelemetryTransmissionInterval(25);
|
||||
}
|
||||
|
||||
public void followTrajectorySequenceAsync(TrajectorySequence trajectorySequence) {
|
||||
currentTrajectorySequence = trajectorySequence;
|
||||
currentSegmentStartTime = clock.seconds();
|
||||
currentSegmentIndex = 0;
|
||||
lastSegmentIndex = -1;
|
||||
}
|
||||
|
||||
public @Nullable
|
||||
DriveSignal update(Pose2d poseEstimate, Pose2d poseVelocity) {
|
||||
Pose2d targetPose = null;
|
||||
DriveSignal driveSignal = null;
|
||||
|
||||
TelemetryPacket packet = new TelemetryPacket();
|
||||
Canvas fieldOverlay = packet.fieldOverlay();
|
||||
|
||||
SequenceSegment currentSegment = null;
|
||||
|
||||
if (currentTrajectorySequence != null) {
|
||||
if (currentSegmentIndex >= currentTrajectorySequence.size()) {
|
||||
for (TrajectoryMarker marker : remainingMarkers) {
|
||||
marker.getCallback().onMarkerReached();
|
||||
}
|
||||
|
||||
remainingMarkers.clear();
|
||||
|
||||
currentTrajectorySequence = null;
|
||||
}
|
||||
|
||||
if (currentTrajectorySequence == null)
|
||||
return new DriveSignal();
|
||||
|
||||
double now = clock.seconds();
|
||||
boolean isNewTransition = currentSegmentIndex != lastSegmentIndex;
|
||||
|
||||
currentSegment = currentTrajectorySequence.get(currentSegmentIndex);
|
||||
|
||||
if (isNewTransition) {
|
||||
currentSegmentStartTime = now;
|
||||
lastSegmentIndex = currentSegmentIndex;
|
||||
|
||||
for (TrajectoryMarker marker : remainingMarkers) {
|
||||
marker.getCallback().onMarkerReached();
|
||||
}
|
||||
|
||||
remainingMarkers.clear();
|
||||
|
||||
remainingMarkers.addAll(currentSegment.getMarkers());
|
||||
Collections.sort(remainingMarkers, (t1, t2) -> Double.compare(t1.getTime(), t2.getTime()));
|
||||
}
|
||||
|
||||
double deltaTime = now - currentSegmentStartTime;
|
||||
|
||||
if (currentSegment instanceof TrajectorySegment) {
|
||||
Trajectory currentTrajectory = ((TrajectorySegment) currentSegment).getTrajectory();
|
||||
|
||||
if (isNewTransition)
|
||||
follower.followTrajectory(currentTrajectory);
|
||||
|
||||
if (!follower.isFollowing()) {
|
||||
currentSegmentIndex++;
|
||||
|
||||
driveSignal = new DriveSignal();
|
||||
} else {
|
||||
driveSignal = follower.update(poseEstimate, poseVelocity);
|
||||
lastPoseError = follower.getLastError();
|
||||
}
|
||||
|
||||
targetPose = currentTrajectory.get(deltaTime);
|
||||
} else if (currentSegment instanceof TurnSegment) {
|
||||
MotionState targetState = ((TurnSegment) currentSegment).getMotionProfile().get(deltaTime);
|
||||
|
||||
turnController.setTargetPosition(targetState.getX());
|
||||
|
||||
double correction = turnController.update(poseEstimate.getHeading());
|
||||
|
||||
double targetOmega = targetState.getV();
|
||||
double targetAlpha = targetState.getA();
|
||||
|
||||
lastPoseError = new Pose2d(0, 0, turnController.getLastError());
|
||||
|
||||
Pose2d startPose = currentSegment.getStartPose();
|
||||
targetPose = startPose.copy(startPose.getX(), startPose.getY(), targetState.getX());
|
||||
|
||||
driveSignal = new DriveSignal(
|
||||
new Pose2d(0, 0, targetOmega + correction),
|
||||
new Pose2d(0, 0, targetAlpha)
|
||||
);
|
||||
|
||||
if (deltaTime >= currentSegment.getDuration()) {
|
||||
currentSegmentIndex++;
|
||||
driveSignal = new DriveSignal();
|
||||
}
|
||||
} else if (currentSegment instanceof WaitSegment) {
|
||||
lastPoseError = new Pose2d();
|
||||
|
||||
targetPose = currentSegment.getStartPose();
|
||||
driveSignal = new DriveSignal();
|
||||
|
||||
if (deltaTime >= currentSegment.getDuration()) {
|
||||
currentSegmentIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
while (remainingMarkers.size() > 0 && deltaTime > remainingMarkers.get(0).getTime()) {
|
||||
remainingMarkers.get(0).getCallback().onMarkerReached();
|
||||
remainingMarkers.remove(0);
|
||||
}
|
||||
}
|
||||
|
||||
poseHistory.add(poseEstimate);
|
||||
|
||||
if (POSE_HISTORY_LIMIT > -1 && poseHistory.size() > POSE_HISTORY_LIMIT) {
|
||||
poseHistory.removeFirst();
|
||||
}
|
||||
|
||||
final double NOMINAL_VOLTAGE = 12.0;
|
||||
double voltage = voltageSensor.getVoltage();
|
||||
if (driveSignal != null && !DriveConstants.RUN_USING_ENCODER) {
|
||||
driveSignal = new DriveSignal(
|
||||
driveSignal.getVel().times(NOMINAL_VOLTAGE / voltage),
|
||||
driveSignal.getAccel().times(NOMINAL_VOLTAGE / voltage)
|
||||
);
|
||||
}
|
||||
|
||||
if (targetPose != null) {
|
||||
LogFiles.record(
|
||||
targetPose, poseEstimate, voltage,
|
||||
lastDriveEncPositions, lastDriveEncVels, lastTrackingEncPositions, lastTrackingEncVels
|
||||
);
|
||||
}
|
||||
|
||||
packet.put("x", poseEstimate.getX());
|
||||
packet.put("y", poseEstimate.getY());
|
||||
packet.put("heading (deg)", Math.toDegrees(poseEstimate.getHeading()));
|
||||
|
||||
packet.put("xError", getLastPoseError().getX());
|
||||
packet.put("yError", getLastPoseError().getY());
|
||||
packet.put("headingError (deg)", Math.toDegrees(getLastPoseError().getHeading()));
|
||||
|
||||
draw(fieldOverlay, currentTrajectorySequence, currentSegment, targetPose, poseEstimate);
|
||||
|
||||
dashboard.sendTelemetryPacket(packet);
|
||||
|
||||
return driveSignal;
|
||||
}
|
||||
|
||||
private void draw(
|
||||
Canvas fieldOverlay,
|
||||
TrajectorySequence sequence, SequenceSegment currentSegment,
|
||||
Pose2d targetPose, Pose2d poseEstimate
|
||||
) {
|
||||
if (sequence != null) {
|
||||
for (int i = 0; i < sequence.size(); i++) {
|
||||
SequenceSegment segment = sequence.get(i);
|
||||
|
||||
if (segment instanceof TrajectorySegment) {
|
||||
fieldOverlay.setStrokeWidth(1);
|
||||
fieldOverlay.setStroke(COLOR_INACTIVE_TRAJECTORY);
|
||||
|
||||
DashboardUtil.drawSampledPath(fieldOverlay, ((TrajectorySegment) segment).getTrajectory().getPath());
|
||||
} else if (segment instanceof TurnSegment) {
|
||||
Pose2d pose = segment.getStartPose();
|
||||
|
||||
fieldOverlay.setFill(COLOR_INACTIVE_TURN);
|
||||
fieldOverlay.fillCircle(pose.getX(), pose.getY(), 2);
|
||||
} else if (segment instanceof WaitSegment) {
|
||||
Pose2d pose = segment.getStartPose();
|
||||
|
||||
fieldOverlay.setStrokeWidth(1);
|
||||
fieldOverlay.setStroke(COLOR_INACTIVE_WAIT);
|
||||
fieldOverlay.strokeCircle(pose.getX(), pose.getY(), 3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (currentSegment != null) {
|
||||
if (currentSegment instanceof TrajectorySegment) {
|
||||
Trajectory currentTrajectory = ((TrajectorySegment) currentSegment).getTrajectory();
|
||||
|
||||
fieldOverlay.setStrokeWidth(1);
|
||||
fieldOverlay.setStroke(COLOR_ACTIVE_TRAJECTORY);
|
||||
|
||||
DashboardUtil.drawSampledPath(fieldOverlay, currentTrajectory.getPath());
|
||||
} else if (currentSegment instanceof TurnSegment) {
|
||||
Pose2d pose = currentSegment.getStartPose();
|
||||
|
||||
fieldOverlay.setFill(COLOR_ACTIVE_TURN);
|
||||
fieldOverlay.fillCircle(pose.getX(), pose.getY(), 3);
|
||||
} else if (currentSegment instanceof WaitSegment) {
|
||||
Pose2d pose = currentSegment.getStartPose();
|
||||
|
||||
fieldOverlay.setStrokeWidth(1);
|
||||
fieldOverlay.setStroke(COLOR_ACTIVE_WAIT);
|
||||
fieldOverlay.strokeCircle(pose.getX(), pose.getY(), 3);
|
||||
}
|
||||
}
|
||||
|
||||
if (targetPose != null) {
|
||||
fieldOverlay.setStrokeWidth(1);
|
||||
fieldOverlay.setStroke("#4CAF50");
|
||||
DashboardUtil.drawRobot(fieldOverlay, targetPose);
|
||||
}
|
||||
|
||||
fieldOverlay.setStroke("#3F51B5");
|
||||
DashboardUtil.drawPoseHistory(fieldOverlay, poseHistory);
|
||||
|
||||
fieldOverlay.setStroke("#3F51B5");
|
||||
DashboardUtil.drawRobot(fieldOverlay, poseEstimate);
|
||||
}
|
||||
|
||||
public Pose2d getLastPoseError() {
|
||||
return lastPoseError;
|
||||
}
|
||||
|
||||
public boolean isBusy() {
|
||||
return currentTrajectorySequence != null;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,40 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryMarker;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
public abstract class SequenceSegment {
|
||||
private final double duration;
|
||||
private final Pose2d startPose;
|
||||
private final Pose2d endPose;
|
||||
private final List<TrajectoryMarker> markers;
|
||||
|
||||
protected SequenceSegment(
|
||||
double duration,
|
||||
Pose2d startPose, Pose2d endPose,
|
||||
List<TrajectoryMarker> markers
|
||||
) {
|
||||
this.duration = duration;
|
||||
this.startPose = startPose;
|
||||
this.endPose = endPose;
|
||||
this.markers = markers;
|
||||
}
|
||||
|
||||
public double getDuration() {
|
||||
return this.duration;
|
||||
}
|
||||
|
||||
public Pose2d getStartPose() {
|
||||
return startPose;
|
||||
}
|
||||
|
||||
public Pose2d getEndPose() {
|
||||
return endPose;
|
||||
}
|
||||
|
||||
public List<TrajectoryMarker> getMarkers() {
|
||||
return markers;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment;
|
||||
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
|
||||
import java.util.Collections;
|
||||
|
||||
public final class TrajectorySegment extends SequenceSegment {
|
||||
private final Trajectory trajectory;
|
||||
|
||||
public TrajectorySegment(Trajectory trajectory) {
|
||||
// Note: Markers are already stored in the `Trajectory` itself.
|
||||
// This class should not hold any markers
|
||||
super(trajectory.duration(), trajectory.start(), trajectory.end(), Collections.emptyList());
|
||||
this.trajectory = trajectory;
|
||||
}
|
||||
|
||||
public Trajectory getTrajectory() {
|
||||
return this.trajectory;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,36 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.profile.MotionProfile;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryMarker;
|
||||
import com.acmerobotics.roadrunner.util.Angle;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
public final class TurnSegment extends SequenceSegment {
|
||||
private final double totalRotation;
|
||||
private final MotionProfile motionProfile;
|
||||
|
||||
public TurnSegment(Pose2d startPose, double totalRotation, MotionProfile motionProfile, List<TrajectoryMarker> markers) {
|
||||
super(
|
||||
motionProfile.duration(),
|
||||
startPose,
|
||||
new Pose2d(
|
||||
startPose.getX(), startPose.getY(),
|
||||
Angle.norm(startPose.getHeading() + totalRotation)
|
||||
),
|
||||
markers
|
||||
);
|
||||
|
||||
this.totalRotation = totalRotation;
|
||||
this.motionProfile = motionProfile;
|
||||
}
|
||||
|
||||
public final double getTotalRotation() {
|
||||
return this.totalRotation;
|
||||
}
|
||||
|
||||
public final MotionProfile getMotionProfile() {
|
||||
return this.motionProfile;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,12 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.trajectorysequence.sequencesegment;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryMarker;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
public final class WaitSegment extends SequenceSegment {
|
||||
public WaitSegment(Pose2d pose, double seconds, List<TrajectoryMarker> markers) {
|
||||
super(seconds, pose, pose, markers);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,70 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import androidx.annotation.Nullable;
|
||||
|
||||
import com.acmerobotics.roadrunner.trajectory.Trajectory;
|
||||
import com.acmerobotics.roadrunner.trajectory.TrajectoryBuilder;
|
||||
import com.acmerobotics.roadrunner.trajectory.config.TrajectoryConfig;
|
||||
import com.acmerobotics.roadrunner.trajectory.config.TrajectoryConfigManager;
|
||||
import com.acmerobotics.roadrunner.trajectory.config.TrajectoryGroupConfig;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.internal.system.AppUtil;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
|
||||
/**
|
||||
* Set of utilities for loading trajectories from assets (the plugin save location).
|
||||
*/
|
||||
public class AssetsTrajectoryManager {
|
||||
|
||||
/**
|
||||
* Loads the group config.
|
||||
*/
|
||||
public static @Nullable
|
||||
TrajectoryGroupConfig loadGroupConfig() {
|
||||
try {
|
||||
InputStream inputStream = AppUtil.getDefContext().getAssets().open(
|
||||
"trajectory/" + TrajectoryConfigManager.GROUP_FILENAME);
|
||||
return TrajectoryConfigManager.loadGroupConfig(inputStream);
|
||||
} catch (IOException e) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Loads a trajectory config with the given name.
|
||||
*/
|
||||
public static @Nullable TrajectoryConfig loadConfig(String name) {
|
||||
try {
|
||||
InputStream inputStream = AppUtil.getDefContext().getAssets().open(
|
||||
"trajectory/" + name + ".yaml");
|
||||
return TrajectoryConfigManager.loadConfig(inputStream);
|
||||
} catch (IOException e) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Loads a trajectory builder with the given name.
|
||||
*/
|
||||
public static @Nullable TrajectoryBuilder loadBuilder(String name) {
|
||||
TrajectoryGroupConfig groupConfig = loadGroupConfig();
|
||||
TrajectoryConfig config = loadConfig(name);
|
||||
if (groupConfig == null || config == null) {
|
||||
return null;
|
||||
}
|
||||
return config.toTrajectoryBuilder(groupConfig);
|
||||
}
|
||||
|
||||
/**
|
||||
* Loads a trajectory with the given name.
|
||||
*/
|
||||
public static @Nullable Trajectory load(String name) {
|
||||
TrajectoryBuilder builder = loadBuilder(name);
|
||||
if (builder == null) {
|
||||
return null;
|
||||
}
|
||||
return builder.build();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
/**
|
||||
* IMU axes signs in the order XYZ (after remapping).
|
||||
*/
|
||||
public enum AxesSigns {
|
||||
PPP(0b000),
|
||||
PPN(0b001),
|
||||
PNP(0b010),
|
||||
PNN(0b011),
|
||||
NPP(0b100),
|
||||
NPN(0b101),
|
||||
NNP(0b110),
|
||||
NNN(0b111);
|
||||
|
||||
public final int bVal;
|
||||
|
||||
AxesSigns(int bVal) {
|
||||
this.bVal = bVal;
|
||||
}
|
||||
|
||||
public static AxesSigns fromBinaryValue(int bVal) {
|
||||
int maskedVal = bVal & 0x07;
|
||||
switch (maskedVal) {
|
||||
case 0b000:
|
||||
return AxesSigns.PPP;
|
||||
case 0b001:
|
||||
return AxesSigns.PPN;
|
||||
case 0b010:
|
||||
return AxesSigns.PNP;
|
||||
case 0b011:
|
||||
return AxesSigns.PNN;
|
||||
case 0b100:
|
||||
return AxesSigns.NPP;
|
||||
case 0b101:
|
||||
return AxesSigns.NPN;
|
||||
case 0b110:
|
||||
return AxesSigns.NNP;
|
||||
case 0b111:
|
||||
return AxesSigns.NNN;
|
||||
default:
|
||||
throw new IllegalStateException("Unexpected value for maskedVal: " + maskedVal);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,8 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
/**
|
||||
* A direction for an axis to be remapped to
|
||||
*/
|
||||
public enum AxisDirection {
|
||||
POS_X, NEG_X, POS_Y, NEG_Y, POS_Z, NEG_Z
|
||||
}
|
|
@ -0,0 +1,54 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import com.acmerobotics.dashboard.canvas.Canvas;
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.acmerobotics.roadrunner.geometry.Vector2d;
|
||||
import com.acmerobotics.roadrunner.path.Path;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Set of helper functions for drawing Road Runner paths and trajectories on dashboard canvases.
|
||||
*/
|
||||
public class DashboardUtil {
|
||||
private static final double DEFAULT_RESOLUTION = 2.0; // distance units; presumed inches
|
||||
private static final double ROBOT_RADIUS = 9; // in
|
||||
|
||||
|
||||
public static void drawPoseHistory(Canvas canvas, List<Pose2d> poseHistory) {
|
||||
double[] xPoints = new double[poseHistory.size()];
|
||||
double[] yPoints = new double[poseHistory.size()];
|
||||
for (int i = 0; i < poseHistory.size(); i++) {
|
||||
Pose2d pose = poseHistory.get(i);
|
||||
xPoints[i] = pose.getX();
|
||||
yPoints[i] = pose.getY();
|
||||
}
|
||||
canvas.strokePolyline(xPoints, yPoints);
|
||||
}
|
||||
|
||||
public static void drawSampledPath(Canvas canvas, Path path, double resolution) {
|
||||
int samples = (int) Math.ceil(path.length() / resolution);
|
||||
double[] xPoints = new double[samples];
|
||||
double[] yPoints = new double[samples];
|
||||
double dx = path.length() / (samples - 1);
|
||||
for (int i = 0; i < samples; i++) {
|
||||
double displacement = i * dx;
|
||||
Pose2d pose = path.get(displacement);
|
||||
xPoints[i] = pose.getX();
|
||||
yPoints[i] = pose.getY();
|
||||
}
|
||||
canvas.strokePolyline(xPoints, yPoints);
|
||||
}
|
||||
|
||||
public static void drawSampledPath(Canvas canvas, Path path) {
|
||||
drawSampledPath(canvas, path, DEFAULT_RESOLUTION);
|
||||
}
|
||||
|
||||
public static void drawRobot(Canvas canvas, Pose2d pose) {
|
||||
canvas.strokeCircle(pose.getX(), pose.getY(), ROBOT_RADIUS);
|
||||
Vector2d v = pose.headingVec().times(ROBOT_RADIUS);
|
||||
double x1 = pose.getX() + v.getX() / 2, y1 = pose.getY() + v.getY() / 2;
|
||||
double x2 = pose.getX() + v.getX(), y2 = pose.getY() + v.getY();
|
||||
canvas.strokeLine(x1, y1, x2, y2);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,125 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import com.acmerobotics.roadrunner.util.NanoClock;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorSimple;
|
||||
|
||||
/**
|
||||
* Wraps a motor instance to provide corrected velocity counts and allow reversing independently of the corresponding
|
||||
* slot's motor direction
|
||||
*/
|
||||
public class Encoder {
|
||||
private final static int CPS_STEP = 0x10000;
|
||||
|
||||
private static double inverseOverflow(double input, double estimate) {
|
||||
// convert to uint16
|
||||
int real = (int) input & 0xffff;
|
||||
// initial, modulo-based correction: it can recover the remainder of 5 of the upper 16 bits
|
||||
// because the velocity is always a multiple of 20 cps due to Expansion Hub's 50ms measurement window
|
||||
real += ((real % 20) / 4) * CPS_STEP;
|
||||
// estimate-based correction: it finds the nearest multiple of 5 to correct the upper bits by
|
||||
real += Math.round((estimate - real) / (5 * CPS_STEP)) * 5 * CPS_STEP;
|
||||
return real;
|
||||
}
|
||||
|
||||
public enum Direction {
|
||||
FORWARD(1),
|
||||
REVERSE(-1);
|
||||
|
||||
private int multiplier;
|
||||
|
||||
Direction(int multiplier) {
|
||||
this.multiplier = multiplier;
|
||||
}
|
||||
|
||||
public int getMultiplier() {
|
||||
return multiplier;
|
||||
}
|
||||
}
|
||||
|
||||
private DcMotorEx motor;
|
||||
private NanoClock clock;
|
||||
|
||||
private Direction direction;
|
||||
|
||||
private int lastPosition;
|
||||
private int velocityEstimateIdx;
|
||||
private double[] velocityEstimates;
|
||||
private double lastUpdateTime;
|
||||
|
||||
public Encoder(DcMotorEx motor, NanoClock clock) {
|
||||
this.motor = motor;
|
||||
this.clock = clock;
|
||||
|
||||
this.direction = Direction.FORWARD;
|
||||
|
||||
this.lastPosition = 0;
|
||||
this.velocityEstimates = new double[3];
|
||||
this.lastUpdateTime = clock.seconds();
|
||||
}
|
||||
|
||||
public Encoder(DcMotorEx motor) {
|
||||
this(motor, NanoClock.system());
|
||||
}
|
||||
|
||||
public Direction getDirection() {
|
||||
return direction;
|
||||
}
|
||||
|
||||
private int getMultiplier() {
|
||||
return getDirection().getMultiplier() * (motor.getDirection() == DcMotorSimple.Direction.FORWARD ? 1 : -1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allows you to set the direction of the counts and velocity without modifying the motor's direction state
|
||||
* @param direction either reverse or forward depending on if encoder counts should be negated
|
||||
*/
|
||||
public void setDirection(Direction direction) {
|
||||
this.direction = direction;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the position from the underlying motor and adjusts for the set direction.
|
||||
* Additionally, this method updates the velocity estimates used for compensated velocity
|
||||
*
|
||||
* @return encoder position
|
||||
*/
|
||||
public int getCurrentPosition() {
|
||||
int multiplier = getMultiplier();
|
||||
int currentPosition = motor.getCurrentPosition() * multiplier;
|
||||
if (currentPosition != lastPosition) {
|
||||
double currentTime = clock.seconds();
|
||||
double dt = currentTime - lastUpdateTime;
|
||||
velocityEstimates[velocityEstimateIdx] = (currentPosition - lastPosition) / dt;
|
||||
velocityEstimateIdx = (velocityEstimateIdx + 1) % 3;
|
||||
lastPosition = currentPosition;
|
||||
lastUpdateTime = currentTime;
|
||||
}
|
||||
return currentPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the velocity directly from the underlying motor and compensates for the direction
|
||||
* See {@link #getCorrectedVelocity} for high (>2^15) counts per second velocities (such as on REV Through Bore)
|
||||
*
|
||||
* @return raw velocity
|
||||
*/
|
||||
public double getRawVelocity() {
|
||||
int multiplier = getMultiplier();
|
||||
return motor.getVelocity() * multiplier;
|
||||
}
|
||||
|
||||
/**
|
||||
* Uses velocity estimates gathered in {@link #getCurrentPosition} to estimate the upper bits of velocity
|
||||
* that are lost in overflow due to velocity being transmitted as 16 bits.
|
||||
* CAVEAT: must regularly call {@link #getCurrentPosition} for the compensation to work correctly.
|
||||
*
|
||||
* @return corrected velocity
|
||||
*/
|
||||
public double getCorrectedVelocity() {
|
||||
double median = velocityEstimates[0] > velocityEstimates[1]
|
||||
? Math.max(velocityEstimates[1], Math.min(velocityEstimates[0], velocityEstimates[2]))
|
||||
: Math.max(velocityEstimates[0], Math.min(velocityEstimates[1], velocityEstimates[2]));
|
||||
return inverseOverflow(getRawVelocity(), median);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,273 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import android.annotation.SuppressLint;
|
||||
import android.content.Context;
|
||||
|
||||
import com.acmerobotics.roadrunner.geometry.Pose2d;
|
||||
import com.fasterxml.jackson.core.JsonFactory;
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
import com.fasterxml.jackson.databind.ObjectWriter;
|
||||
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpModeManagerImpl;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpModeManagerNotifier;
|
||||
import com.qualcomm.robotcore.util.RobotLog;
|
||||
import com.qualcomm.robotcore.util.WebHandlerManager;
|
||||
|
||||
import org.firstinspires.ftc.ftccommon.external.WebHandlerRegistrar;
|
||||
import org.firstinspires.ftc.robotcore.internal.system.AppUtil;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.DriveConstants;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.MecanumDrive;
|
||||
import org.firstinspires.ftc.teamcode.hardware.roadrunner.drive.StandardTrackingWheelLocalizer;
|
||||
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.IOException;
|
||||
import java.text.DateFormat;
|
||||
import java.text.SimpleDateFormat;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Date;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
import fi.iki.elonen.NanoHTTPD;
|
||||
|
||||
public final class LogFiles {
|
||||
private static final File ROOT =
|
||||
new File(AppUtil.ROOT_FOLDER + "/RoadRunner/logs/");
|
||||
|
||||
public static LogFile log = new LogFile("uninitialized");
|
||||
|
||||
public static class LogFile {
|
||||
public String version = "quickstart1 v2";
|
||||
|
||||
public String opModeName;
|
||||
public long msInit = System.currentTimeMillis();
|
||||
public long nsInit = System.nanoTime();
|
||||
public long nsStart, nsStop;
|
||||
|
||||
public double ticksPerRev = DriveConstants.TICKS_PER_REV;
|
||||
public double maxRpm = DriveConstants.MAX_RPM;
|
||||
public boolean runUsingEncoder = DriveConstants.RUN_USING_ENCODER;
|
||||
public double motorP = DriveConstants.MOTOR_VELO_PID.p;
|
||||
public double motorI = DriveConstants.MOTOR_VELO_PID.i;
|
||||
public double motorD = DriveConstants.MOTOR_VELO_PID.d;
|
||||
public double motorF = DriveConstants.MOTOR_VELO_PID.f;
|
||||
public double wheelRadius = DriveConstants.WHEEL_RADIUS;
|
||||
public double gearRatio = DriveConstants.GEAR_RATIO;
|
||||
public double trackWidth = DriveConstants.TRACK_WIDTH;
|
||||
public double kV = DriveConstants.kV;
|
||||
public double kA = DriveConstants.kA;
|
||||
public double kStatic = DriveConstants.kStatic;
|
||||
public double maxVel = DriveConstants.MAX_VEL;
|
||||
public double maxAccel = DriveConstants.MAX_ACCEL;
|
||||
public double maxAngVel = DriveConstants.MAX_ANG_VEL;
|
||||
public double maxAngAccel = DriveConstants.MAX_ANG_ACCEL;
|
||||
|
||||
public double mecTransP = MecanumDrive.TRANSLATIONAL_PID.kP;
|
||||
public double mecTransI = MecanumDrive.TRANSLATIONAL_PID.kI;
|
||||
public double mecTransD = MecanumDrive.TRANSLATIONAL_PID.kD;
|
||||
public double mecHeadingP = MecanumDrive.HEADING_PID.kP;
|
||||
public double mecHeadingI = MecanumDrive.HEADING_PID.kI;
|
||||
public double mecHeadingD = MecanumDrive.HEADING_PID.kD;
|
||||
public double mecLateralMultiplier = MecanumDrive.LATERAL_MULTIPLIER;
|
||||
|
||||
public double tankAxialP = SampleTankDrive.AXIAL_PID.kP;
|
||||
public double tankAxialI = SampleTankDrive.AXIAL_PID.kI;
|
||||
public double tankAxialD = SampleTankDrive.AXIAL_PID.kD;
|
||||
public double tankCrossTrackP = SampleTankDrive.CROSS_TRACK_PID.kP;
|
||||
public double tankCrossTrackI = SampleTankDrive.CROSS_TRACK_PID.kI;
|
||||
public double tankCrossTrackD = SampleTankDrive.CROSS_TRACK_PID.kD;
|
||||
public double tankHeadingP = SampleTankDrive.HEADING_PID.kP;
|
||||
public double tankHeadingI = SampleTankDrive.HEADING_PID.kI;
|
||||
public double tankHeadingD = SampleTankDrive.HEADING_PID.kD;
|
||||
|
||||
public double trackingTicksPerRev = StandardTrackingWheelLocalizer.TICKS_PER_REV;
|
||||
public double trackingWheelRadius = StandardTrackingWheelLocalizer.WHEEL_RADIUS;
|
||||
public double trackingGearRatio = StandardTrackingWheelLocalizer.GEAR_RATIO;
|
||||
public double trackingLateralDistance = StandardTrackingWheelLocalizer.LATERAL_DISTANCE;
|
||||
public double trackingForwardOffset = StandardTrackingWheelLocalizer.FORWARD_OFFSET;
|
||||
|
||||
public RevHubOrientationOnRobot.LogoFacingDirection LOGO_FACING_DIR = DriveConstants.LOGO_FACING_DIR;
|
||||
public RevHubOrientationOnRobot.UsbFacingDirection USB_FACING_DIR = DriveConstants.USB_FACING_DIR;
|
||||
|
||||
public List<Long> nsTimes = new ArrayList<>();
|
||||
|
||||
public List<Double> targetXs = new ArrayList<>();
|
||||
public List<Double> targetYs = new ArrayList<>();
|
||||
public List<Double> targetHeadings = new ArrayList<>();
|
||||
|
||||
public List<Double> xs = new ArrayList<>();
|
||||
public List<Double> ys = new ArrayList<>();
|
||||
public List<Double> headings = new ArrayList<>();
|
||||
|
||||
public List<Double> voltages = new ArrayList<>();
|
||||
|
||||
public List<List<Integer>> driveEncPositions = new ArrayList<>();
|
||||
public List<List<Integer>> driveEncVels = new ArrayList<>();
|
||||
public List<List<Integer>> trackingEncPositions = new ArrayList<>();
|
||||
public List<List<Integer>> trackingEncVels = new ArrayList<>();
|
||||
|
||||
public LogFile(String opModeName) {
|
||||
this.opModeName = opModeName;
|
||||
}
|
||||
}
|
||||
|
||||
public static void record(
|
||||
Pose2d targetPose, Pose2d pose, double voltage,
|
||||
List<Integer> lastDriveEncPositions, List<Integer> lastDriveEncVels, List<Integer> lastTrackingEncPositions, List<Integer> lastTrackingEncVels
|
||||
) {
|
||||
long nsTime = System.nanoTime();
|
||||
if (nsTime - log.nsStart > 3 * 60 * 1_000_000_000L) {
|
||||
return;
|
||||
}
|
||||
|
||||
log.nsTimes.add(nsTime);
|
||||
|
||||
log.targetXs.add(targetPose.getX());
|
||||
log.targetYs.add(targetPose.getY());
|
||||
log.targetHeadings.add(targetPose.getHeading());
|
||||
|
||||
log.xs.add(pose.getX());
|
||||
log.ys.add(pose.getY());
|
||||
log.headings.add(pose.getHeading());
|
||||
|
||||
log.voltages.add(voltage);
|
||||
|
||||
while (log.driveEncPositions.size() < lastDriveEncPositions.size()) {
|
||||
log.driveEncPositions.add(new ArrayList<>());
|
||||
}
|
||||
while (log.driveEncVels.size() < lastDriveEncVels.size()) {
|
||||
log.driveEncVels.add(new ArrayList<>());
|
||||
}
|
||||
while (log.trackingEncPositions.size() < lastTrackingEncPositions.size()) {
|
||||
log.trackingEncPositions.add(new ArrayList<>());
|
||||
}
|
||||
while (log.trackingEncVels.size() < lastTrackingEncVels.size()) {
|
||||
log.trackingEncVels.add(new ArrayList<>());
|
||||
}
|
||||
|
||||
for (int i = 0; i < lastDriveEncPositions.size(); i++) {
|
||||
log.driveEncPositions.get(i).add(lastDriveEncPositions.get(i));
|
||||
}
|
||||
for (int i = 0; i < lastDriveEncVels.size(); i++) {
|
||||
log.driveEncVels.get(i).add(lastDriveEncVels.get(i));
|
||||
}
|
||||
for (int i = 0; i < lastTrackingEncPositions.size(); i++) {
|
||||
log.trackingEncPositions.get(i).add(lastTrackingEncPositions.get(i));
|
||||
}
|
||||
for (int i = 0; i < lastTrackingEncVels.size(); i++) {
|
||||
log.trackingEncVels.get(i).add(lastTrackingEncVels.get(i));
|
||||
}
|
||||
}
|
||||
|
||||
private static final OpModeManagerNotifier.Notifications notifHandler = new OpModeManagerNotifier.Notifications() {
|
||||
@SuppressLint("SimpleDateFormat")
|
||||
final DateFormat dateFormat = new SimpleDateFormat("yyyy_MM_dd__HH_mm_ss_SSS");
|
||||
|
||||
final ObjectWriter jsonWriter = new ObjectMapper(new JsonFactory())
|
||||
.writerWithDefaultPrettyPrinter();
|
||||
|
||||
@Override
|
||||
public void onOpModePreInit(OpMode opMode) {
|
||||
log = new LogFile(opMode.getClass().getCanonicalName());
|
||||
|
||||
// clean up old files
|
||||
File[] fs = Objects.requireNonNull(ROOT.listFiles());
|
||||
Arrays.sort(fs, (a, b) -> Long.compare(a.lastModified(), b.lastModified()));
|
||||
long totalSizeBytes = 0;
|
||||
for (File f : fs) {
|
||||
totalSizeBytes += f.length();
|
||||
}
|
||||
|
||||
int i = 0;
|
||||
while (i < fs.length && totalSizeBytes >= 32 * 1000 * 1000) {
|
||||
totalSizeBytes -= fs[i].length();
|
||||
if (!fs[i].delete()) {
|
||||
RobotLog.setGlobalErrorMsg("Unable to delete file " + fs[i].getAbsolutePath());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onOpModePreStart(OpMode opMode) {
|
||||
log.nsStart = System.nanoTime();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onOpModePostStop(OpMode opMode) {
|
||||
log.nsStop = System.nanoTime();
|
||||
|
||||
if (!(opMode instanceof OpModeManagerImpl.DefaultOpMode)) {
|
||||
//noinspection ResultOfMethodCallIgnored
|
||||
ROOT.mkdirs();
|
||||
|
||||
String filename = dateFormat.format(new Date(log.msInit)) + "__" + opMode.getClass().getSimpleName() + ".json";
|
||||
File file = new File(ROOT, filename);
|
||||
try {
|
||||
jsonWriter.writeValue(file, log);
|
||||
} catch (IOException e) {
|
||||
RobotLog.setGlobalErrorMsg(new RuntimeException(e),
|
||||
"Unable to write data to " + file.getAbsolutePath());
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@WebHandlerRegistrar
|
||||
public static void registerRoutes(Context context, WebHandlerManager manager) {
|
||||
//noinspection ResultOfMethodCallIgnored
|
||||
ROOT.mkdirs();
|
||||
|
||||
// op mode manager only stores a weak reference, so we need to keep notifHandler alive ourselves
|
||||
// don't use @OnCreateEventLoop because it's unreliable
|
||||
OpModeManagerImpl.getOpModeManagerOfActivity(
|
||||
AppUtil.getInstance().getActivity()
|
||||
).registerListener(notifHandler);
|
||||
|
||||
manager.register("/logs", session -> {
|
||||
final StringBuilder sb = new StringBuilder();
|
||||
sb.append("<!doctype html><html><head><title>Logs</title></head><body><ul>");
|
||||
File[] fs = Objects.requireNonNull(ROOT.listFiles());
|
||||
Arrays.sort(fs, (a, b) -> Long.compare(b.lastModified(), a.lastModified()));
|
||||
for (File f : fs) {
|
||||
sb.append("<li><a href=\"/logs/download?file=");
|
||||
sb.append(f.getName());
|
||||
sb.append("\" download=\"");
|
||||
sb.append(f.getName());
|
||||
sb.append("\">");
|
||||
sb.append(f.getName());
|
||||
sb.append("</a></li>");
|
||||
}
|
||||
sb.append("</ul></body></html>");
|
||||
return NanoHTTPD.newFixedLengthResponse(NanoHTTPD.Response.Status.OK,
|
||||
NanoHTTPD.MIME_HTML, sb.toString());
|
||||
});
|
||||
|
||||
manager.register("/logs/download", session -> {
|
||||
final String[] pairs = session.getQueryParameterString().split("&");
|
||||
if (pairs.length != 1) {
|
||||
return NanoHTTPD.newFixedLengthResponse(NanoHTTPD.Response.Status.BAD_REQUEST,
|
||||
NanoHTTPD.MIME_PLAINTEXT, "expected one query parameter, got " + pairs.length);
|
||||
}
|
||||
|
||||
final String[] parts = pairs[0].split("=");
|
||||
if (!parts[0].equals("file")) {
|
||||
return NanoHTTPD.newFixedLengthResponse(NanoHTTPD.Response.Status.BAD_REQUEST,
|
||||
NanoHTTPD.MIME_PLAINTEXT, "expected file query parameter, got " + parts[0]);
|
||||
}
|
||||
|
||||
File f = new File(ROOT, parts[1]);
|
||||
if (!f.exists()) {
|
||||
return NanoHTTPD.newFixedLengthResponse(NanoHTTPD.Response.Status.NOT_FOUND,
|
||||
NanoHTTPD.MIME_PLAINTEXT, "file " + f + " doesn't exist");
|
||||
}
|
||||
|
||||
return NanoHTTPD.newChunkedResponse(NanoHTTPD.Response.Status.OK,
|
||||
"application/json", new FileInputStream(f));
|
||||
});
|
||||
}
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.internal.system.AppUtil;
|
||||
|
||||
import java.io.File;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Utility functions for log files.
|
||||
*/
|
||||
public class LoggingUtil {
|
||||
public static final File ROAD_RUNNER_FOLDER =
|
||||
new File(AppUtil.ROOT_FOLDER + "/RoadRunner/");
|
||||
|
||||
private static final long LOG_QUOTA = 25 * 1024 * 1024; // 25MB log quota for now
|
||||
|
||||
private static void buildLogList(List<File> logFiles, File dir) {
|
||||
for (File file : dir.listFiles()) {
|
||||
if (file.isDirectory()) {
|
||||
buildLogList(logFiles, file);
|
||||
} else {
|
||||
logFiles.add(file);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static void pruneLogsIfNecessary() {
|
||||
List<File> logFiles = new ArrayList<>();
|
||||
buildLogList(logFiles, ROAD_RUNNER_FOLDER);
|
||||
Collections.sort(logFiles, (lhs, rhs) ->
|
||||
Long.compare(lhs.lastModified(), rhs.lastModified()));
|
||||
|
||||
long dirSize = 0;
|
||||
for (File file: logFiles) {
|
||||
dirSize += file.length();
|
||||
}
|
||||
|
||||
while (dirSize > LOG_QUOTA) {
|
||||
if (logFiles.size() == 0) break;
|
||||
File fileToRemove = logFiles.remove(0);
|
||||
dirSize -= fileToRemove.length();
|
||||
//noinspection ResultOfMethodCallIgnored
|
||||
fileToRemove.delete();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtain a log file with the provided name
|
||||
*/
|
||||
public static File getLogFile(String name) {
|
||||
//noinspection ResultOfMethodCallIgnored
|
||||
ROAD_RUNNER_FOLDER.mkdirs();
|
||||
|
||||
pruneLogsIfNecessary();
|
||||
|
||||
return new File(ROAD_RUNNER_FOLDER, name);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,124 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import com.qualcomm.hardware.lynx.LynxModule;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.internal.system.Misc;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Collection of utilites for interacting with Lynx modules.
|
||||
*/
|
||||
public class LynxModuleUtil {
|
||||
|
||||
private static final LynxFirmwareVersion MIN_VERSION = new LynxFirmwareVersion(1, 8, 2);
|
||||
|
||||
/**
|
||||
* Parsed representation of a Lynx module firmware version.
|
||||
*/
|
||||
public static class LynxFirmwareVersion implements Comparable<LynxFirmwareVersion> {
|
||||
public final int major;
|
||||
public final int minor;
|
||||
public final int eng;
|
||||
|
||||
public LynxFirmwareVersion(int major, int minor, int eng) {
|
||||
this.major = major;
|
||||
this.minor = minor;
|
||||
this.eng = eng;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object other) {
|
||||
if (other instanceof LynxFirmwareVersion) {
|
||||
LynxFirmwareVersion otherVersion = (LynxFirmwareVersion) other;
|
||||
return major == otherVersion.major && minor == otherVersion.minor &&
|
||||
eng == otherVersion.eng;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public int compareTo(LynxFirmwareVersion other) {
|
||||
int majorComp = Integer.compare(major, other.major);
|
||||
if (majorComp == 0) {
|
||||
int minorComp = Integer.compare(minor, other.minor);
|
||||
if (minorComp == 0) {
|
||||
return Integer.compare(eng, other.eng);
|
||||
} else {
|
||||
return minorComp;
|
||||
}
|
||||
} else {
|
||||
return majorComp;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return Misc.formatInvariant("%d.%d.%d", major, minor, eng);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieve and parse Lynx module firmware version.
|
||||
* @param module Lynx module
|
||||
* @return parsed firmware version
|
||||
*/
|
||||
public static LynxFirmwareVersion getFirmwareVersion(LynxModule module) {
|
||||
String versionString = module.getNullableFirmwareVersionString();
|
||||
if (versionString == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
String[] parts = versionString.split("[ :,]+");
|
||||
try {
|
||||
// note: for now, we ignore the hardware entry
|
||||
return new LynxFirmwareVersion(
|
||||
Integer.parseInt(parts[3]),
|
||||
Integer.parseInt(parts[5]),
|
||||
Integer.parseInt(parts[7])
|
||||
);
|
||||
} catch (NumberFormatException e) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Exception indicating an outdated Lynx firmware version.
|
||||
*/
|
||||
public static class LynxFirmwareVersionException extends RuntimeException {
|
||||
public LynxFirmwareVersionException(String detailMessage) {
|
||||
super(detailMessage);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure all of the Lynx modules attached to the robot satisfy the minimum requirement.
|
||||
* @param hardwareMap hardware map containing Lynx modules
|
||||
*/
|
||||
public static void ensureMinimumFirmwareVersion(HardwareMap hardwareMap) {
|
||||
Map<String, LynxFirmwareVersion> outdatedModules = new HashMap<>();
|
||||
for (LynxModule module : hardwareMap.getAll(LynxModule.class)) {
|
||||
LynxFirmwareVersion version = getFirmwareVersion(module);
|
||||
if (version == null || version.compareTo(MIN_VERSION) < 0) {
|
||||
for (String name : hardwareMap.getNamesOf(module)) {
|
||||
outdatedModules.put(name, version);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (outdatedModules.size() > 0) {
|
||||
StringBuilder msgBuilder = new StringBuilder();
|
||||
msgBuilder.append("One or more of the attached Lynx modules has outdated firmware\n");
|
||||
msgBuilder.append(Misc.formatInvariant("Mandatory minimum firmware version for Road Runner: %s\n",
|
||||
MIN_VERSION.toString()));
|
||||
for (Map.Entry<String, LynxFirmwareVersion> entry : outdatedModules.entrySet()) {
|
||||
msgBuilder.append(Misc.formatInvariant(
|
||||
"\t%s: %s\n", entry.getKey(),
|
||||
entry.getValue() == null ? "Unknown" : entry.getValue().toString()));
|
||||
}
|
||||
throw new LynxFirmwareVersionException(msgBuilder.toString());
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,156 @@
|
|||
package org.firstinspires.ftc.teamcode.hardware.roadrunner.util;
|
||||
|
||||
import androidx.annotation.Nullable;
|
||||
|
||||
import com.acmerobotics.roadrunner.kinematics.Kinematics;
|
||||
|
||||
import org.apache.commons.math3.stat.regression.SimpleRegression;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileNotFoundException;
|
||||
import java.io.PrintWriter;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Various regression utilities.
|
||||
*/
|
||||
public class RegressionUtil {
|
||||
|
||||
/**
|
||||
* Feedforward parameter estimates from the ramp regression and additional summary statistics
|
||||
*/
|
||||
public static class RampResult {
|
||||
public final double kV, kStatic, rSquare;
|
||||
|
||||
public RampResult(double kV, double kStatic, double rSquare) {
|
||||
this.kV = kV;
|
||||
this.kStatic = kStatic;
|
||||
this.rSquare = rSquare;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Feedforward parameter estimates from the ramp regression and additional summary statistics
|
||||
*/
|
||||
public static class AccelResult {
|
||||
public final double kA, rSquare;
|
||||
|
||||
public AccelResult(double kA, double rSquare) {
|
||||
this.kA = kA;
|
||||
this.rSquare = rSquare;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Numerically compute dy/dx from the given x and y values. The returned list is padded to match
|
||||
* the length of the original sequences.
|
||||
*
|
||||
* @param x x-values
|
||||
* @param y y-values
|
||||
* @return derivative values
|
||||
*/
|
||||
private static List<Double> numericalDerivative(List<Double> x, List<Double> y) {
|
||||
List<Double> deriv = new ArrayList<>(x.size());
|
||||
for (int i = 1; i < x.size() - 1; i++) {
|
||||
deriv.add(
|
||||
(y.get(i + 1) - y.get(i - 1)) /
|
||||
(x.get(i + 1) - x.get(i - 1))
|
||||
);
|
||||
}
|
||||
// copy endpoints to pad output
|
||||
deriv.add(0, deriv.get(0));
|
||||
deriv.add(deriv.get(deriv.size() - 1));
|
||||
return deriv;
|
||||
}
|
||||
|
||||
/**
|
||||
* Run regression to compute velocity and static feedforward from ramp test data.
|
||||
*
|
||||
* Here's the general procedure for gathering the requisite data:
|
||||
* 1. Slowly ramp the motor power/voltage and record encoder values along the way.
|
||||
* 2. Run a linear regression on the encoder velocity vs. motor power plot to obtain a slope
|
||||
* (kV) and an optional intercept (kStatic).
|
||||
*
|
||||
* @param timeSamples time samples
|
||||
* @param positionSamples position samples
|
||||
* @param powerSamples power samples
|
||||
* @param fitStatic fit kStatic
|
||||
* @param file log file
|
||||
*/
|
||||
public static RampResult fitRampData(List<Double> timeSamples, List<Double> positionSamples,
|
||||
List<Double> powerSamples, boolean fitStatic,
|
||||
@Nullable File file) {
|
||||
if (file != null) {
|
||||
try (PrintWriter pw = new PrintWriter(file)) {
|
||||
pw.println("time,position,power");
|
||||
for (int i = 0; i < timeSamples.size(); i++) {
|
||||
double time = timeSamples.get(i);
|
||||
double pos = positionSamples.get(i);
|
||||
double power = powerSamples.get(i);
|
||||
pw.println(time + "," + pos + "," + power);
|
||||
}
|
||||
} catch (FileNotFoundException e) {
|
||||
// ignore
|
||||
}
|
||||
}
|
||||
|
||||
List<Double> velSamples = numericalDerivative(timeSamples, positionSamples);
|
||||
|
||||
SimpleRegression rampReg = new SimpleRegression(fitStatic);
|
||||
for (int i = 0; i < timeSamples.size(); i++) {
|
||||
double vel = velSamples.get(i);
|
||||
double power = powerSamples.get(i);
|
||||
|
||||
rampReg.addData(vel, power);
|
||||
}
|
||||
|
||||
return new RampResult(Math.abs(rampReg.getSlope()), Math.abs(rampReg.getIntercept()),
|
||||
rampReg.getRSquare());
|
||||
}
|
||||
|
||||
/**
|
||||
* Run regression to compute acceleration feedforward.
|
||||
*
|
||||
* @param timeSamples time samples
|
||||
* @param positionSamples position samples
|
||||
* @param powerSamples power samples
|
||||
* @param rampResult ramp result
|
||||
* @param file log file
|
||||
*/
|
||||
public static AccelResult fitAccelData(List<Double> timeSamples, List<Double> positionSamples,
|
||||
List<Double> powerSamples, RampResult rampResult,
|
||||
@Nullable File file) {
|
||||
if (file != null) {
|
||||
try (PrintWriter pw = new PrintWriter(file)) {
|
||||
pw.println("time,position,power");
|
||||
for (int i = 0; i < timeSamples.size(); i++) {
|
||||
double time = timeSamples.get(i);
|
||||
double pos = positionSamples.get(i);
|
||||
double power = powerSamples.get(i);
|
||||
pw.println(time + "," + pos + "," + power);
|
||||
}
|
||||
} catch (FileNotFoundException e) {
|
||||
// ignore
|
||||
}
|
||||
}
|
||||
|
||||
List<Double> velSamples = numericalDerivative(timeSamples, positionSamples);
|
||||
List<Double> accelSamples = numericalDerivative(timeSamples, velSamples);
|
||||
|
||||
SimpleRegression accelReg = new SimpleRegression(false);
|
||||
for (int i = 0; i < timeSamples.size(); i++) {
|
||||
double vel = velSamples.get(i);
|
||||
double accel = accelSamples.get(i);
|
||||
double power = powerSamples.get(i);
|
||||
|
||||
double powerFromVel = Kinematics.calculateMotorFeedforward(
|
||||
vel, 0.0, rampResult.kV, 0.0, rampResult.kStatic);
|
||||
double powerFromAccel = power - powerFromVel;
|
||||
|
||||
accelReg.addData(accel, powerFromAccel);
|
||||
}
|
||||
|
||||
return new AccelResult(Math.abs(accelReg.getSlope()), accelReg.getRSquare());
|
||||
}
|
||||
}
|
|
@ -1,7 +1,5 @@
|
|||
package org.firstinspires.ftc.teamcode.util;
|
||||
|
||||
import com.qualcomm.robotcore.hardware.PIDFCoefficients;
|
||||
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Rect;
|
||||
import org.opencv.core.Size;
|
||||
|
@ -27,26 +25,13 @@ public class Configurables {
|
|||
public static double R_PUSHER_OPEN = 0.55;
|
||||
public static double R_PUSHER_DELAY = 0.15;
|
||||
|
||||
// Auto Aim Constants
|
||||
public static double AUTO_AIM_OFFSET_X = 5;
|
||||
public static double AUTO_AIM_WAIT = 0.2;
|
||||
public static PIDFCoefficients AUTO_AIM_PID = new PIDFCoefficients(0.009, 0.3, 0.0019, 0);
|
||||
public static double AUTO_AIM_ACCEPTABLE_ERROR = 2;
|
||||
public static double AUTO_AIM_MIN_POWER = 0.14;
|
||||
|
||||
// CV Color Threshold Constants
|
||||
public static Color CAMERA_RED_GOAL_LOWER = new Color(165, 80, 80);
|
||||
public static Color CAMERA_RED_GOAL_UPPER = new Color(15, 255, 255);
|
||||
public static Color CAMERA_RED_POWERSHOT_LOWER = new Color(165, 80, 80);
|
||||
public static Color CAMERA_RED_POWERSHOT_UPPER = new Color(15, 255, 255);
|
||||
public static Color CAMERA_BLUE_GOAL_LOWER = new Color(75, 40, 80);
|
||||
public static Color CAMERA_BLUE_GOAL_UPPER = new Color(120, 255, 255);
|
||||
public static Color CAMERA_BLUE_POWERSHOT_LOWER = new Color(75, 30, 50);
|
||||
public static Color CAMERA_BLUE_POWERSHOT_UPPER = new Color(120, 255, 255);
|
||||
public static Color CAMERA_ORANGE_LOWER = new Color(0, 70, 50);
|
||||
public static Color CAMERA_ORANGE_UPPER = new Color(60, 255, 255);
|
||||
public static Color CAMERA_WHITE_LOWER = new Color(0, 0, 40);
|
||||
public static Color CAMERA_WHITE_UPPER = new Color(180, 30, 255);
|
||||
public static Color FTC_RED_LOWER = new Color(165, 80, 80);
|
||||
public static Color FTC_RED_UPPER = new Color(15, 255, 255);
|
||||
public static Color FTC_BLUE_LOWER = new Color(75, 40, 80);
|
||||
public static Color FTC_BLUE_UPPER = new Color(120, 255, 255);
|
||||
public static Color FTC_WHITE_LOWER = new Color(0, 0, 40);
|
||||
public static Color FTC_WHITE_UPPER = new Color(180, 30, 255);
|
||||
|
||||
// CV Detection Constants
|
||||
public static double CV_MIN_STARTERSTACK_AREA = 0;
|
||||
|
@ -54,26 +39,5 @@ public class Configurables {
|
|||
public static double CV_MIN_STARTERSTACK_QUAD_AREA = 1.3;
|
||||
public static double CV_MIN_GOAL_AREA = 0;
|
||||
public static double CV_MAX_GOAL_AREA = 0.3;
|
||||
public static double CV_MIN_POWERSHOT_AREA = 0.001;
|
||||
public static double CV_MAX_POWERSHOT_AREA = 0.05;
|
||||
public static Rect CV_STARTERSTACK_LOCATION = new Rect(75, 50, 190, 90);
|
||||
public static Point CV_POWERSHOT_OFFSET = new Point(-3, -20); // offset from the bottom left of the goal to the top right of the powershot box (for red)
|
||||
public static Size CV_POWERSHOT_DIMENSIONS = new Size(100, 50);
|
||||
|
||||
public static Size CV_GOAL_PROPER_ASPECT = new Size(11, 8.5);
|
||||
public static double CV_GOAL_PROPER_AREA = 1.25;
|
||||
public static double CV_GOAL_ALLOWABLE_AREA_ERROR = 1;
|
||||
public static double CV_GOAL_ALLOWABLE_SOLIDARITY_ERROR = 1;
|
||||
public static double CV_GOAL_CUTOFF_Y_LINE = 65;
|
||||
public static double CV_GOAL_PROPER_HEIGHT = 107;
|
||||
public static double CV_GOAL_MIN_CONFIDENCE = 3;
|
||||
|
||||
public static Color CV_POWERSHOT_OFFSETS_RED = new Color(-40, -30, -19);
|
||||
public static Color CV_POWERSHOT_OFFSETS_BLUE = new Color(40, 30, 19);
|
||||
|
||||
// Old CV Detection Constants
|
||||
public static double CV_GOAL_SIDE_ALLOWABLE_Y_ERROR = 20;
|
||||
public static double CV_GOAL_SIDE_ALLOWABLE_SIZE_ERROR = 100;
|
||||
public static Size CV_GOAL_SIDE_ASPECT_RATIO = new Size(6.5,15.5);
|
||||
public static double CV_GOAL_SIDE_ALLOWABLE_ASPECT_ERROR = 10;
|
||||
}
|
|
@ -11,24 +11,6 @@ import org.opencv.imgproc.Moments;
|
|||
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Locale;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CAMERA_BLUE_GOAL_LOWER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CAMERA_BLUE_GOAL_UPPER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CAMERA_RED_GOAL_LOWER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CAMERA_RED_GOAL_UPPER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_ALLOWABLE_AREA_ERROR;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_SIDE_ALLOWABLE_ASPECT_ERROR;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_SIDE_ALLOWABLE_SIZE_ERROR;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_ALLOWABLE_SOLIDARITY_ERROR;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_SIDE_ALLOWABLE_Y_ERROR;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_SIDE_ASPECT_RATIO;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_MIN_CONFIDENCE;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_PROPER_AREA;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_PROPER_ASPECT;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_GOAL_PROPER_HEIGHT;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_MAX_GOAL_AREA;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_MIN_GOAL_AREA;
|
||||
|
||||
// CV Helper Functions
|
||||
public class OpenCVUtil {
|
||||
|
@ -105,49 +87,4 @@ public class OpenCVUtil {
|
|||
Collections.sort(contours, (a, b) -> (int) Imgproc.contourArea(b) - (int) Imgproc.contourArea(a));
|
||||
return contours.subList(0, Math.min(numContours, contours.size()));
|
||||
}
|
||||
|
||||
public static MatOfPoint getHighGoalContour(List<MatOfPoint> contours) {
|
||||
Collections.sort(contours, (a, b) -> (int) Imgproc.contourArea(b) - (int) Imgproc.contourArea(a));
|
||||
// return null if nothing
|
||||
if (contours.size() == 0) {
|
||||
return null;
|
||||
}
|
||||
// check each contour for touching the top, aspect, and size
|
||||
double properAspect = ((double) CV_GOAL_SIDE_ASPECT_RATIO.height) / ((double) CV_GOAL_SIDE_ASPECT_RATIO.width);
|
||||
for (int i = 0; i < contours.size() - 1; i++) {
|
||||
MatOfPoint contour = contours.get(i);
|
||||
Rect rect = Imgproc.boundingRect(contour);
|
||||
double area = Imgproc.contourArea(contour);
|
||||
double aspect = ((double) rect.height) / ((double) rect.width);
|
||||
if (rect.y <= -100 || Math.abs(properAspect - aspect) > CV_GOAL_SIDE_ALLOWABLE_ASPECT_ERROR ||
|
||||
area < CV_MIN_GOAL_AREA || area > CV_MAX_GOAL_AREA) {
|
||||
contours.remove(i);
|
||||
i--;
|
||||
}
|
||||
}
|
||||
// check for 2 that can be combined
|
||||
int goalCounter = -1;
|
||||
for (int i = 0; i < contours.size() - 1; i++) {
|
||||
MatOfPoint contour1 = contours.get(i);
|
||||
MatOfPoint contour2 = contours.get(i + 1);
|
||||
Rect rect1 = Imgproc.boundingRect(contour1);
|
||||
Rect rect2 = Imgproc.boundingRect(contour2);
|
||||
double area1 = Imgproc.contourArea(contour1);
|
||||
double area2 = Imgproc.contourArea(contour2);
|
||||
if (Math.abs(Math.abs(rect1.y) - Math.abs(rect2.y)) < CV_GOAL_SIDE_ALLOWABLE_Y_ERROR &&
|
||||
Math.abs(area1 - area2) < CV_GOAL_SIDE_ALLOWABLE_SIZE_ERROR) {
|
||||
goalCounter = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// return the results
|
||||
if (goalCounter == -1) {
|
||||
return contours.get(0);
|
||||
} else {
|
||||
MatOfPoint highGoal = new MatOfPoint();
|
||||
highGoal.push_back(contours.get(goalCounter));
|
||||
highGoal.push_back(contours.get(goalCounter + 1));
|
||||
return highGoal;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,7 +1,7 @@
|
|||
package org.firstinspires.ftc.teamcode.vision;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CAMERA_RED_GOAL_LOWER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CAMERA_RED_GOAL_UPPER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.FTC_RED_LOWER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.FTC_RED_UPPER;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_MAX_GOAL_AREA;
|
||||
import static org.firstinspires.ftc.teamcode.util.Configurables.CV_MIN_GOAL_AREA;
|
||||
import static org.firstinspires.ftc.teamcode.util.Constants.ANCHOR;
|
||||
|
@ -54,10 +54,10 @@ public class TargetingPipeline extends OpenCvPipeline {
|
|||
// Update the Red Goal Detection
|
||||
private void updateRed(Mat input) {
|
||||
// take pixels that are in the color range and put them into a mask, eroding and dilating them to remove white noise
|
||||
redGoalLower1 = new Scalar(CAMERA_RED_GOAL_LOWER.getH(), CAMERA_RED_GOAL_LOWER.getS(), CAMERA_RED_GOAL_LOWER.getV());
|
||||
redGoalUpper1 = new Scalar(180, CAMERA_RED_GOAL_UPPER.getS(), CAMERA_RED_GOAL_UPPER.getV());
|
||||
redGoalLower2 = new Scalar(0, CAMERA_RED_GOAL_LOWER.getS(), CAMERA_RED_GOAL_LOWER.getV());
|
||||
redGoalUpper2 = new Scalar(CAMERA_RED_GOAL_UPPER.getH(), CAMERA_RED_GOAL_UPPER.getS(), CAMERA_RED_GOAL_UPPER.getV());
|
||||
redGoalLower1 = new Scalar(FTC_RED_LOWER.getH(), FTC_RED_LOWER.getS(), FTC_RED_LOWER.getV());
|
||||
redGoalUpper1 = new Scalar(180, FTC_RED_UPPER.getS(), FTC_RED_UPPER.getV());
|
||||
redGoalLower2 = new Scalar(0, FTC_RED_LOWER.getS(), FTC_RED_LOWER.getV());
|
||||
redGoalUpper2 = new Scalar(FTC_RED_UPPER.getH(), FTC_RED_UPPER.getS(), FTC_RED_UPPER.getV());
|
||||
Core.inRange(hsv, redGoalLower1, redGoalUpper1, redMask1);
|
||||
Core.inRange(hsv, redGoalLower2, redGoalUpper2, redMask2);
|
||||
Core.add(redMask1, redMask2, redMask);
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
repositories {
|
||||
mavenCentral()
|
||||
google() // Needed for androidx
|
||||
maven {
|
||||
url = 'https://maven.brott.dev/'
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
@ -17,5 +20,9 @@ dependencies {
|
|||
implementation 'org.tensorflow:tensorflow-lite-task-vision:0.4.3'
|
||||
runtimeOnly 'org.tensorflow:tensorflow-lite:2.12.0'
|
||||
implementation 'androidx.appcompat:appcompat:1.2.0'
|
||||
implementation 'com.acmerobotics.dashboard:dashboard:0.4.12'
|
||||
|
||||
compileOnly 'org.projectlombok:lombok:1.18.30'
|
||||
annotationProcessor 'org.projectlombok:lombok:1.18.30'
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue